Неионизирующие электромагнитные излучения. Неионизирующие поля и излучения Использование неионизирующих электромагнитных излучений в медицине

Кафедра «Гигиены общей с экологией»

На тему: «Производственная санитария. Обеспечение комфортных условий трудовой деятельности.»

Выполнила

Студентка 2-го курса

205-Л2 группы

Талаш Симона

Александровна

Производственная санитария. Обеспечение комфортных условий трудовой деятельности.

Введение

Производственная санитария - система гигиенических, санитарно-технических, организационных мероприятий и средств, предотвращающих воздействие на работающих вредных производственных факторов.

Основными источниками информации для написания дипломной работы послужили законодательные акты Российской Федерации, санитарные нормы, строительные нормы и правила, ГОСТы Российской Федерации, Руководство Р2.2.2006-05, методические пособия; материалы, полученные из книжных изданий, статьи из научных работ.

Дипломная работа содержит две главы. В первой главе рассматривается процесс аттестации рабочих мест по условиям труда.

Во второй главе анализируется результат проведенных исследований по аттестации рабочих мест по условиям труда, обосновывается экономический эффект от внедрения новых приборов.

Гигиенические факторы рабочей среды и трудового процесса

Вредными факторами могут быть:

1. физические факторы:

Температура, влажность, скорость движения воздуха, тепловое излучение; неионизирующие электромагнитные поля (ЭМП) и излучения - электростатическое поле;

Постоянное магнитное поле (в т.ч. гипогеомагнитное);

Электрические и магнитные поля промышленной частоты (50 Гц); широкополосные ЭМП, создаваемые ПЭВМ;

Электромагнитные излучения радиочастотного диапазона;

Широкополосные электромагнитные импульсы;

Электромагнитные излучения оптического диапазона (в т.ч. лазерное и ультрафиолетовое);

Ионизирующие излучения;

Производственный шум, ультразвук, инфразвук;

Вибрация (локальная, общая);

Аэрозоли (пыли) преимущественно фиброгенного действия;

Освещение - естественное (отсутствие или недостаточность), искусственное (недостаточная освещенность, пульсация освещенности, избыточная яркость, высокая неравномерность распределения яркости, прямая и отраженная слепящая блесткость);

Электрически заряженные частицы воздуха - аэроионы;

2. химические факторы:

Химические вещества, смеси, в т.ч. некоторые вещества биологической природы (антибиотики, витамины, гормоны, ферменты, белковые препараты), получаемые химическим синтезом и/или для контроля которых используют методы химического анализа;

3. биологические факторы:

Микроорганизмы-продуценты, живые клетки и споры, содержащиеся в бактериальных препаратах, патогенные микроорганизмы - возбудители инфекционных заболеваний;

Виброакустические

Шумом называется любой нежелательный звук или совокупность таких звуков. Звук представляет собой волнообразно распространяющийся в упругой среде колебательный процесс в виде чередующихся волн сгущения и раздражения частиц этой среды - звуковые волны. Источником звука может являться любое колеблющееся тело. При соприкосновении этого тела с окружающей средой образуются звуковые волны. Волны сгущения вызывают повышение давления в упругой среде, а волны разряжения - понижение. Отсюда возникает понятие звукового давления - это переменное давление, возникающее при прохождении звуковых волн дополнительно к атмосферному давлению.

Звуковое давление - переменная составляющая давления воздуха или газа, возникающая в результате звуковых колебаний, Па.

По характеру спектра шума выделяют:

Тональный шум, в спектре которого имеются выраженные тоны.

Тональный - характер шума для практических целей устанавливается измерением в 1/3 октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шума выделяют:

Постоянный шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике шумомера "медленно";

Непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА при измерениях на временной характеристике шумомера "медленно".

Непостоянные шумы подразделяют на:

Колеблющийся во времени шум, уровень звука которого непрерывно изменяется во времени;

Прерывистый шум, уровень звука которого ступенчато изменяется (на 5 дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

Импульсный шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАI и дБА, измеренные соответственно на временных характеристиках "импульс" и "медленно", отличаются не менее чем на 7 дБ.

Степень вредности и опасности условий труда при действии виброакустических факторов устанавливается с учетом их временных характеристик (постоянный, непостоянный шум, вибрация и т.д.).

Допустимый уровень шума - это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Предельно допустимый уровень (ПДУ) шума - это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Оценка условий труда при воздействии на работника постоянного шума проводится по результатам измерения уровня звука, в дБА, по шкале "А" шумомера на временной характеристике "медленно".

Оценка условий труда при воздействии на работника непостоянного шума производится по результатам измерения эквивалентного уровня звука за смену (интегрирующим шумомером) или расчетным способом.

При воздействии в течение смены на работающего шумов с разными временными (постоянный, непостоянный - колеблющийся, прерывистый, импульсный) и спектральными (тональный) характеристиками в различных сочетаниях измеряют или рассчитывают эквивалентный уровень звука.

Эквивалентный (по энергии) уровень звука, LАэкв., дБА, непостоянного шума - уровень звука постоянного широкополосного шума, который имеет такое же среднеквадратичное звуковое давление, что и данный непостоянный шум в течение определенного интервала времени.

Для получения в этом случае сопоставимых данных измеренные или рассчитанные эквивалентные уровни звука импульсного и тонального шумов следует увеличить на 5 дБА, после чего полученный результат можно сравнивать с ПДУ без внесения в него понижающей поправки, установленной СН 2.2.4/2.1.8.562-96.

Инфразвук - это еще мало изученный фактор производственной среды, который способен оказывать неблагоприятное влияние на организм человека и его работоспособность.

В современной акустике под звуком понимают механические колебания в сплошной упруго-инерционной среде, например, твердой, жидкой или газообразной. В соответствии с определением звуковые колебания охватывают диапазон частот теоретически от нуля до бесконечности.

В зависимости от частоты колебаний совершенно условно (для удобства изучения явления) звуковые колебания подразделяются на инфразвуковые, акустические, ультразвуковые.

Согласно такой классификации, под инфразвуком (ИЗ) принято понимать звуковые колебания с частотами ниже 20 Гц. Звуковые колебания в диапазоне от 20 Гц до 20 кГц - акустические (слышимые), а выше 20 кГц - ультразвуковые.

Физическая природа звука и инфразвука одна и та же. Разделение их обусловлено особенностями слухового анализатора человека, который воспринимает лишь определенный диапазон частот. Границы слышимости являются условными. Известно, что они зависят от индивидуальной чувствительности звуковосирииимающего аппарата и возрастных особенностей слуховой функции человека.

Таким образом, инфразвуком (инфразвуковым шумом) называют любые акустические колебания или совокупность таких колебаний в частотном диапазоне до 20 Гц. Для гигиенической оценки производственного инфразвука практический интерес представляет частотный диапазон от 1,6 до 20 Гц, включающий четыре октавных полосы со среднегеометрическими частотами 2, 4, 8 и 16 Гц или двенадцать треть октавных полос со среднегеометрическими частотами 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16 и 20 Гц. В целях сравнительной оценки спектральных кривых шумов дополнительно используется октава 31,5 Гц.

Проблема физиологического воздействия инфразвука является очень сложной и ее изучение затруднено по многим причинам, и главная из них - это то, что трудно установить границу между действием инфразвука и действием слышимого звука. Такие переходные процессы как шумы, или взрывы, всегда имеют инфразвуковые составляющие, уровень которых обычно выше звукового давления. На близком или среднем расстоянии от источника всегда происходит смешение составляющих всех частот, вследствие чего возникает вопрос - какие из этих составляющих и, в какой степени являются причинами возможных вредных воздействий? То же самое происходит в случае периодических шумов, производимых двигателями, компрессорами или другими техническими устройствами. Или воздействие сильных звуков, которые содержат в своем составе инфразвук, что является очень вредным, поскольку защита от их действия весьма затруднена. Действительно, наивысшая спектральная плотность, обнаруженная в самолетах, автомашинах и т.п., почти всегда концентрируется в области инфразвука. Другая трудность заключается в относительно малой надежности экспериментов. Если в области шумов и звуковых ударов произведено огромное количество исследований, то наоборот, действие периодических инфразвуков изучено довольно мало.

Предельно допустимые уровни инфразвука на рабочих местах согласно СН 2.2.4/2.1.8.583-96 "Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки" дифференцированы по видам работ, в частности для работ различной степени тяжести и работ различной степени интеллектуально-эмоциональной напряженности. Поэтому оценку условий труда работников, подвергающихся воздействию инфразвука, следует начинать с количественной оценки тяжести и напряженности труда, что позволит определить соответствующий норматив для конкретного рабочего места.

Непостоянные инфразвуковые шумы характеризуются эквивалентными (по энергии) уровнями, которые оказывают такое же действие на организм человека, как и постоянный инфразвуковой шум.

Ультразвук - это упругие колебания и волны с частотой выше 20 кГц, неслышимые человеческим ухом. В настоящее время удается получать ультразвуковые колебания с частотой до 10 ГГц. Соответственно указанным частотным диапазонам, область длины ультразвуковых воли в воздухе составляет- от 1,6 до 0,3 * 104 см, в жидкостях от 6,0 до 1,2 * 104 см, и в твердых телах - от 20,0 до 4,0 * 10 см.

Ультразвуковые волны по своей природе не отличаются от упругих воли слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических воли любого диапазона частот. К основным законам распространения ультразвука относятся законы отражения и преломления па границах различных сред, дифракция и рассеяние ультразвука при наличии препятствий и неоднородностей на границах, законы волноводного распространения в ограниченных участках среды.

Вместе с тем, высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств, присущих только ультразвуку.

Во-первых, это возможность визуального наблюдения ультразвуковых воли оптическими методами. Далее, благодаря малой длине волны ультразвуковые волны хорошо фокусируются, и, следовательно, возможно получение направленного излучения. Еще одна весьма важная особенность ультразвука заключается в возможности получения высоких значений интенсивности при относительно небольших амплитудах колебаний.

Уменьшение амплитуды и интенсивности ультразвуковой волны по мере ее распространения в заданном направлении, т.е. затухание определяется рассеиванием и поглощением ультразвука, переходом ультразвуковой энергии в другие формы, например, в тепловую.

К техногенным источникам ультразвука относятся все виды ультразвукового технологического оборудования, ультразвуковые приборы и аппаратура промышленного, медицинского, бытового назначения, которые генерируют ультразвуковые колебания в диапазоне частот от 18 кГц до 100 МГц и выше. К источникам ультразвука относится также оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

В настоящее время ультразвук широко применяется в разных отраслях хозяйства. Машиностроение, металлургия, химия, радиоэлектроника, строительство, геология, легкая и пищевая промышленность, рыбный промысел, медицина -- вот далеко неполный перечень основных областей использования ультразвуковых колебаний.

Среди многообразия способов применения ультразвука с гигиенических позиций целесообразно выделить два основных направления:

Применение низкочастотных (до 100 кГц) ультразвуковых колебаний, распространяющихся контактным и воздушным путем, для активного воздействия па вещества и технологические процессы - очистка, обеззараживание, сварка, пайка, механическая и термическая обработка материалов (сверхтвердых сплавов, алмазов, керамики и др.), коагуляция аэрозолей; в медицине - ультразвуковой хирургический инструментарий, установки для стерилизации рук медперсонала, различных предметов и др.

Применение высокочастотных (100 кГц -- 100 МГц и выше) ультразвуковых колебаний, распространяющихся исключительно контактным путем, для неразрушающего контроля и измерений; в медицине - диагностика и лечение различных заболеваний.

Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется интенсивностью ультразвуковых колебаний, частотой, временными параметрами колебаний (постоянный, импульсный), длительностью воздействия, чувствительностью тканей.

При разработке эффективных профилактических мероприятий, направленных на оптимизацию и оздоровление условий труда работников ультразвуковых профессий, на первое место выдвигаются вопросы гигиенического нормирования ультразвука, как неблагоприятного физического фактора производственной среды и среды обитания.

Новые федеральные санитарные нормы и правила устанавливают гигиеническую классификацию ультразвука, воздействующего на человека-оператора; нормируемые параметры и предельно допустимые уровни ультразвука для работающих и населения; требования к контролю воздушного и контактного ультразвука, меры профилактики. Следует отметить, что настоящие нормы и правила не распространяются на лиц (пациентов), подвергающихся воздействию ультразвука в лечебно-диагностических целях.

В отличие от СанПиН 2.2.4/2.1.8.582-96, действующим в настоящее время ГОСТ 12.1.001-89 „ССБТ. Ультразвук. Общие требования безопасности" установлены нормативы только для работающих.

Нормируемыми параметрами воздушного ультразвука являются уровни звукового давления в децибелах в третьоктавных полосах со среднегеометрическими частотами 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100 кГц.

Нормируемыми параметрами контактного ультразвука являются пиковые значения виброскорости или ее логарифмические уровни в дБ в октавных полосах со среднегеометрическими частотами 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000; 31500 кГц.

Оценка условий труда при воздействии на работника воздушного ультразвука (с частотой колебаний в диапазоне от 20,0 до 100,0 кГц) проводится по результатам измерения уровня звукового давления на рабочей частоте источника ультразвуковых колебаний. И оценка условий труда при воздействии контактного ультразвука (с частотой колебаний в диапазоне от 20,0 кГц до 100,0 МГц) проводится по результатам измерения пикового значения виброскорости (м/с) или его логарифмического уровня (дБ) на рабочей частоте источника ультразвуковых колебаний.

При совместном воздействии контактного и воздушного ультразвука ПДУ контактного ультразвука следует принимать на 5 дБ ниже указанных в СанПиН 2.2.4/2.1.8.582-96.

Вибрация - это движение точки или механической системы, при котором происходят колебания характеризующих его скалярных величин.

Абсолютные значения параметров, характеризующих вибрацию (виброскорость, виброускорения), изменяются в очень широких пределах поэтому в практике используются понятие уровня параметров.

Вибрация классифицируется:

1) По способу передачи;

Общая, передающаяся через опорные поверхности на тело сидящего или стоячего человека.

Локальная, передающаяся через руки человека (вибрация передающаяся на ноги сидячего человека и на предплечья, контактирующая с вибрирующими поверхностями рабочих столов, относятся к локальной).

2) По источнику возникновения:

Общая в жилых помещениях и общественных зданиях (от внешних и внутренних источников)

Общая на производстве (категории 1,2,3)

Локальная на производстве (а) локальная вибрация, передающаяся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием; б) локальная, передающаяся человеку от ручного немеханизированного инструмента (без двигателей).

Общая вибрация 1 категории - транспортная вибрация, воздействующая на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности, аграфонам и дорогам (в том числе при их строительстве).

Общая вибрация 2 категории - транспортно - технологическая вибрация, воздействующая на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок.

По временным характеристикам:

Постоянная вибрация - вибрация, величина нормируемых параметров которой изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения.

Непостоянная вибрация - вибрация, величина нормируемых параметров которой изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения

Гигиеническая оценка воздействующей на работника постоянной вибрации (общей, локальной) проводится согласно СН 2.2.4/2.1.8.566-96

"Производственная вибрация, вибрация в помещениях жилых и общественных зданий" методом интегральной оценки по частоте нормируемого параметра. При этом для оценки условий труда измеряют или рассчитывают корректированный уровень (значение) виброскорости или виброускорения (согласно приложению к СН 2.2.4/2.1.8.566-96).

Гигиеническая оценка воздействующей на работника непостоянной вибрации (общей, локальной) проводится согласно СН 2.2.4/2.1.8.566-96 методом интегральной оценки по эквивалентному (по энергии) уровню нормируемого параметра. При этом для оценки условий труда измеряют или рассчитывают эквивалентный корректированный уровень (значение) виброскорости или виброускорения (согласно приложению к СН 2.2.4/2.1.8.566-96).

Световая среда

Одним из ведущих факторов, обеспечивающих нормальную жизнедеятельность организма человека, является полноценная световая, ультрафиолетовая и инфракрасная среда, создаваемая Солнцем и разнообразными искусственными источниками, отличающимися спектральной характеристикой.

Видимому излучению, свету, как одному из раздражителей внешней среды, обладающему значительным биологическим действием и сопутствующему человеку во всей его жизни, принадлежит основная роль в регуляции важнейших функций организма.

Гигиеническое значение видимого излучения, которое в естественных условиях меняется в широких пределах, речь, в конечном итоге, идет об изменениях функций зрительного анализатора, ибо изменения, происходящие в анализаторе, будут с известной полнотой отражать влияние адекватного раздражителя.

Зрительный анализатор -- один из основных органов чувств. Он не только выполняет роль периферического рецепторного аппарата, но и имеет ведущее значение в объединении всех органов чувств в единую функциональную систему анализаторов (П.К. Анохин, 1975, С.И. Вавилов, 1976). Кроме того, зрительный анализатор принадлежит важнейшая роль в регуляции биологических ритмов, а следовательно, и основных процессов жизнедеятельности организма.

Видимое излучение, являясь составной частью радиационного климата, есть адекватный раздражитель зрительного анализатора, через который поступает до 90% информации об окружающем нас мире.

Естественным источником света является Солнце, температура поверхности которого равна примерно 6 000°С. Интегральное излучение Солнца, приходящее к верхней границе атмосферы, характеризуется солнечной постоянной, т.е. тем количеством лучистой энергии, которое проходит за минуту через площадку 1 см2, перпендикулярно к солнечным лучам при среднем расстоянии между Землей и Солнцем около 150 млн. км. Различают тепловую солнечную постоянную, равную 1,895 кал/см2 мин (около 1317 Вт/м2), и световую солнечную постоянную, равную 137 000 лк. На поверхности Земли указанные постоянные несколько меньше и определяются как астрономическими факторами (вращение Земли вокруг оси и отклонение (Солнца), так и оптическими свойствами атмосферы, через которую проходит солнечное излучение.

Для характеристики естественного светового климата местности имеет значение длительность астрономического дня, продолжительность периода сияния Солнца, высота его стояния. От высоты стояния Солнца зависит и его спектральная характеристика, которая, в свою очередь, предопределяет биологическое действие интегрального солнечного излучения. В зависимости от высоты стояния Солнца меняется уровень освещенности как при безоблачной погоде -- в тени и на солнце, так и при пасмурной.

Организм человека в разной степени реагирует на воздействия того или иного характера естественного светового климата: как специфическими, так и неспецифическими сдвигами, направленными, в конечном счете, на уравновешивание организма со средой. Однако неполноценный световой климат и, в частности, длительное отсутствие видимого излучения, может явиться причиной изменения не только функционального состояния отдельных органов и систем, но и развития ряда патологических нарушений, среди которых особое место занимают аномалии рефракции. Наиболее отчетливо зависимость числа лиц с аномалией рефракции от характера естественного радиационного климата проявляется в условиях Севера.

Так, среди подростков Заполярья (возраст 15-17 лет) лиц, имеющих миопическую рефракцию, в 2--3 раза больше, чем среди подростков, проживающих в южных районах страны.

Динамические наблюдения за лицами, проживающими в разных климатических районах, позволили выявить, что весной у проживающих на Севере наблюдается более заметное ухудшение физиологических функций, чем осенью. Это свидетельствует о том, что проживание на Севере в зимний период года при низких уровнях освещенности, создаваемых лишь искусственными источниками излучения, без какого-либо естественного освещения, не способствует поддержанию зрительных функций на том уровне, который имеет место у них же в осенний период. Кроме того, для организма небезразличны характер и степень воздействия естественного светового климата, оказывающего широкое общебиологическое действие. Циркадная система, начинающая нервный путь от сетчатой оболочки глаза, контролирует суточные ритмы сна и бодрствования, температуры тела, гормональную секрецию и другие физиологические функции, включая и познавательную деятельность. Световое излучение является первичным стимулом, регулирующим циркадную систему, хотя другие внешние раздражители (звук, тепло, социальные сигналы) также могут влиять на функции чувств времени.

Сегодня существует понятие синдрома «сезонного расстройства» (СР). У людей с диагнозом «сезонного расстройства» наблюдаются эмоциональные депрессии, большой упадок физических сил, повышенный аппетит и потребность в сне, а также желание замкнуться в себе в осенне-зимний период. Светотерапия, как метод лечения данного синдрома, широко применяется и оказывает положительное воздействие на людей с нарушениями сна, менструального цикла, пищеварения. Эта область терапии широко развивается, и световое лечение успешно используется при болезнях, связанных с СР и работой в ночную смену. Причем результаты объективных исследований биохимии крови на содержание в ней мелатонина позволили установить, что при освещенности 800 лк в организме человека не возникают изменения, характерные для светлого времени суток, и только освещенность 2500 лк вызывает изменение биохимии крови, характерное для светового дня (Дж.К. Брейнард, К.А. Бернекер, 1996).

Отсутствие или недостаток естественного света в производственных помещениях связаны со строительством безоконных и бесфонарных зданий или зданий соответствующих строительно-планировочных решений (одноэтажных многопролетных или многоэтажных зданий большой ширины) с недостаточной естественной освещенностью.

С отрицательным воздействием на работающих отсутствия естественного света связано явление «светового голодания». «Световое голодание» -- это состояние организма, обусловленное дефицитом ультрафиолетового излучения и проявляющееся в нарушении обмена веществ и снижении резистентности организма. Кроме того, продолжительная работа в помещении без естественного света может оказывать неблагоприятное психофизиологическое воздействие на работающих из-за отсутствия связи с внешним миром, ощущения замкнутости пространства, особенно в небольших по площади помещениях, монотонности искусственной световой среды. Все это вызывает неприятные субъективные ощущения у работающих, приводит к ухудшению их самочувствия, настроения и снижению работоспособности.

Высокая производительность труда тесно связана с рациональным производственным освещением, которое может создаваться естественным и искусственными источниками света.

Видимое излучение относится к группе производственных факторов, для которых, кроме оптимальной величины, следует определять и тот минимальный уровень, т.е. нижнюю границу оптимума - «не менее», за пределами которой зрительный анализатор не может выполнять данную работу в заданном объеме. Верхняя же граница в условиях искусственной световой среды будет определяться техническими и энергетическими возможностями сегодняшнего дня.

Непосредственной причиной травм при неудовлетворительным освещении может быть как непосредственное ухудшение условий наблюдения и плохая видимость в рабочей зоне, так и повышенное утомление работающих, приводящие к снижению концентрации внимания.

Возможность отрицательного воздействия условий освещения на работающих обусловливается рядом факторов:

1) отсутствием или недостаточностью естественного света;

2) пониженной освещенностью;

3) повышенной яркостью;

4) прямой и отраженной блескостью;

5) повышенной пульсацией освещенности;

6) повышенным уровнем ультрафиолетового излучения.

Оценка параметров световой среды по естественному и искусственному освещению проводится по критериям, приведенным соответствии с Руководством Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда», СНиП 23-05-95* «Естественное и искусственное освещение», СанПиН 2.2.1/2.1.1.1278-03 «Гигиеническое требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий», СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам организация работы», СанПиН 2.2.2.1332-03 «Гигиенические требования к организации работы на копировально-множительной технике», отраслевыми и ведомственными нормативными документами по освещению, и в соответствии с Методическими указаниями «Оценка освещения рабочих мест».

Естественное освещение оценивается по коэффициенту естественной освещенности (КЕО). При расположении рабочего места в нескольких зонах с различными условиями естественного освещения, в т.ч. и вне зданий, класс условий труда присваивается с учетом времени пребывания в этих зонах.

Искусственное освещение оценивается по ряду показателей (освещенности, прямой блесткости, коэффициенту пульсации освещенности и другим нормируемым показателям освещения). После присвоения классов по отдельным показателям проводится окончательная оценка по фактору "искусственное освещение" путем выбора показателя, отнесенного к наибольшей степени вредности.

При выполнении на рабочем месте различных зрительных работ или при расположении рабочего места в нескольких зонах (помещениях, участках, на открытой территории и т.п.) оценка условий труда по показателям искусственного освещения проводится с учетом времени выполнения этих зрительных работ или с учетом времени пребывания в разных зонах работы. При этом вначале определяется класс условий труда с учетом времени воздействия по каждому показателю отдельно, а затем присваивается класс по фактору "искусственное освещение" в соответствии с методикой, изложенной в Методических указаниях "Оценка освещения рабочих мест".

Общая оценка условий труда по фактору "Освещение" производится с учетом возможности компенсации недостаточности или отсутствия естественного освещения путем создания благоприятных условий искусственного освещения и, при необходимости, компенсации ультрафиолетовой недостаточности.

Неионизирующие электромагнитные поля и излучения

К неионизирующим электромагнитным излучениям и полям (НЭ-МИП) относят электромагнитные излучения радиочастотного и оптического диапазонов, а также условно - статические электрические и постоянные магнитные поля, поскольку последние, строго говоря, излучениями не являются.

Электромагнитные излучения (ЭМИ) распространяются в виде электромагнитных волн, основными характеристиками которых являются: длина волны --X, м, частота колебаний -- f, Гц и скорость распространения -- V, м/с. В свободном пространстве скорость распространения ЭМИ равна скорости света -- С = 3 * 108 м/с.

Неионизирующие электромагнитные излучения и поля естественного происхождения. До недавнего времени основное внимание исследователей, занимающихся проблемой гигиенического нормирования неионизирующих электромагнитных излучений (НЭМИ), было сосредоточено на изучении биоэффектов ЭМИ антропогенного происхождения, уровни которых существенно превышают естественный электромагнитный фон Земли. Вместе с тем, в последние десятилетия была убедительно доказана важнейшая роль ЭМИ естественного происхождения в становлении жизни на Земле и ее последующих развитии и регуляции.

Биологическое действие неионизирующих электромагнитных излучений и полей естественного происхождения

Особое внимание при изучении влияния естественных ЭМИ на живую природу уделяется геомагнитному полю, как одному из важнейших факторов окружающей среды. Показано, что у различных организмов (от бактерий до млекопитающих) выявляется целый ряд реакций со стороны различных систем на изменение геомагнитного поля (Дубров А.П., 1974; Холодов Ю.А., 1976, 1982; Моисеева Н.И., Любицкий Р.И., 1986). Получены материалы, которые не только подтверждают чувствительность организмов к геомагнитному полю, но и не исключают у многих из них способности воспринимать содержащуюся в нем пространственно-временную информацию. Это свидетельствует о том, что геомагнитное поле является существенным компонентом среды обитания. Изучение магниторецепции у человека дало основание считать, что она представлена как в структурах мозга, так и надпочечниках (Дюрвард Д.Скайлс, 1989).В настоящее время стало ясно, что естественные электромагнитные поля следует рассматривать как один из важнейших экологических факторов. И если осуществление жизнедеятельности в условиях воздействия естественных ЭМИ является таким значимым и одновременно „привычным" для биосистем, то попадание в ситуацию, когда их уровни претерпевают резкие колебания или значительно снижены, может иметь серьезные негативные последствия.

К неионизирующим электромагнитным излучениям и полям принято относить электромагнитные излучения оптического и радиочастотного диапазона, а также – условно-статические электрические и постоянные магнитные поля.

Электромагнитные излучения (ЭМИ) распространяются в виде электромагнитных волн, характеризующих: длиной волны – λ(м), частотой колебаний (Гц) и скоростью распространения V (м/с). В свободном пространстве скорость распространения ЭМИ равна скорости света – С = 3 х 10 8 м/с. Названные параметры связаны между собой соотношением

К данной группе факторов воздействия на организм относят:

· Неионизирующие электромагнитные излучения и поля естественного происхождения;

· Статические электрические поля;

· Постоянные магнитные поля;

· Электромагнитные излучения и поля промышленной частоты и радиочастотного диапазона;

· Лазерное излучение.

Воздействие на человека в условиях производства оказывают поля и излучения, названные в последних четырех позициях.

Неионизирующие излучения и поля естественного происхождения стали изучаться сравнительно недавно, и в последние десятилетия была убедительно доказана важная их роль в становлении жизни на Земле, ее последующем развитии и регуляции. В спектре естественных электромагнитных полей условно можно выделить несколько составляющих – постоянное магнитное поле Земли, или геомагнитное поле (ГМП), электростатическое поле и переменные электромагнитные поля диапазона частот от 10 -3 до 10 12 Гц.

Естественные электромагнитные поля, в том числе ГМП, могут оказывать на организм неоднозначное влияние. С одной стороны, геомагнитные возмущения рассматриваются как экологический фактор риска – оказывают десинхронизирующее влияние на биологические ритмы, модуляции функционального состояния мозга, способствуют возрастанию числа клинически тяжелых медицинских патологий (инфарктов миокарда, инсультов, дорожно-транспортных происшествий и аварий, в том числе авиационных). С другой стороны, установлена связь непериодических вариаций ГМП с циркадными, инфрадными и циркосептадными биологическими ритмами и взаимоотношениями между ними.

Неблагоприятное влияние на организм могут оказывать не только магнитные бури, но и фактор длительного пребывания человека в условиях ослабленных ЭМП, в том числе на ряде производств, где имеет место работа в экранированных помещениях и сооружениях. Работающие в таких условиях часто предъявляют жалобы на ухудшение самочувствия и состояния здоровья, что явилось основанием для возникновения нового направления гигиены – изучение действия гипогеомагнитного поля. Пониженный уровень геомагнитного поля может наблюдаться не только в экранированных сооружениях, но и в подземных сооружениях метрополитена (в 2-5 раз), в зданиях, выполненных из железобетонных конструкций (в 1,3-2,3 раза), в кабинах скоростных лифтов (в 15-19 раз), в салонах легковых автомобилей (в 1,5-3 раза) и т. д.

Установлено влияние гипогеомагнитных полей на ЦНС (дисбаланс основных нервных процессов, дистония мозговых сосудов, удлинение времени реакций), вегетативную нервную систему (лабильность пульса, артериального давления, нейроциркуляторная дистония гипертензивного типа, нарушение процесса реполяризации миокарда), иммунную систему (снижение общего числа Т-лимфоцитов, концентрации IgG и IgA, увеличение концентрации IgE).

6.1. Статические электрические поля (СЭП). Представляют собой поля неподвижных электрических зарядов, либо стационарные электрические поля постоянного тока. Они достаточно широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения красок и полимерных материалов. Существует также целый ряд производств и технологических процессов по изготовлению, обработке и транспортировке диэлектрических материалов, при которых отмечается образование электростатических зарядов и полей, вызванных электризацией перерабатываемого продукта (текстильная, деревообрабатывающая, целлюлозно-бумажная, химическая промышленность и др.).

Основными физическими параметрами СЭП являются напряженность поля и потенциал отдельных точек. СЭП определяется отношением силы, действующей на точечный заряд, к величине заряда и измеряется в вольтах на метр (В/м). Энергетические характеристики СЭП определяются потенциалами точек поля.

Выявляемые у работающих в условиях воздействия СЭП нарушения носят как правило функциональный характер и укладываются в рамки астеноневротического синдрома и вегетососудистой дистонии. Объективно обнаруживаются нерезко выраженные функциональные сдвиги, не имеющие каких-либо специфических проявлений. Предельно допустимая величина напряженности СЭП на рабочих местах устанавливается в зависимости от времени воздействия в течение рабочего дня. Предельно допустимая напряженность электростатического поля (Е ngy) на рабочих местах не должна превышать при воздействии до 1 часа 60 кВ/м, а при более продолжительной работе определяется по формуле

где, t- время в часах от 1 до 9.

6.2. Постоянные магнитные поля . Источниками постоянных магнитных полей (ПМП) на рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электромагнитные ванны и др.).

Постоянные магниты и электромагниты широко используются в приборостроении, в магнитных шайбах подъемных кранов, в магнитных сепараторах, в устройствах для магнитной обработки воды, в магнитогидродинамических генераторах (МГД), установках ядерного магнитного резонанса (ЯМР) и электронно-парамагнитного резонанса (ЭПР), в физиотерапевтической практике.

Основными физическими параметрами, характеризующими ПМП, являются напряженность поля (Н), магнитный поток (Ф) и магнитная индукция (В). В системе СИ единицей измерения напряженности магнитного поля является ампер на метр (А/м) магнитного потока – Вебер (Вб), плотности магнитного потока (магнитной индукции) – тесла (Тл).

Уровни МПМ до 2 Тл не оказывают существенного влияния на организм. В то же время выявлены изменения в состоянии здоровья лиц, работающих с источниками ПМП. Чаще всего эти изменения проявляются в виде вегетодистоний, астеновегетативного и периферического вазовегетативног синдромов или их сочетания. Со стороны крови возможна тенденция к снижению количества эритроцитов и содержания гемоглобина, умеренный лимфо- и лейкоцитоз.

Напряженность ПМП на рабочих местах не должна превышать 8 кА/м (10 мТл). Допустимые уровни ПМП, рекомендованные Международным комитетом по неионизирующим излучениям (1991 г), дифференцированы по контингенту, месту воздействия и времени работы. Для профессионалов 0,2 Тл – при воздействии полный рабочий день (8часов); 2 Тл – при кратковременном воздействий на тело; 5 Тл – при кратковременном воздействии на руки. Для населения уровень непрерывного воздействия ПМП не должен превышать 0,01 Тл.

6.3. Электромагнитные излучения промышленной частоты и радиочастотного диапазона . К электромагнитным излучениям (ЭМП) радиочастотного диапазона – относятся ЭМП с частотой от 3 до 3*10 12 Гц (соответственно с длиной волны от 100 000 км до 0,1 мм). В соответствии с международным регламентом выделяется 12 частотных поддиапазонов в зависимости от длины волны и частоты.

Различают два наиболее часто встречающихся типа электромагнитных колебаний – гармоничные и модулированные.

При гармоничных колебаниях электрическая (Е) и магнитная (Н) составляющие изменяются по закону синуса или косинуса. При модулированных колебаниях амплитуда и частота изменяются по определенному закону.

Источники ЭМИ радиочастотного диапазона широко используются в различных отраслях народного хозяйства: для передачи информации на расстоянии (радиовещание, радиотелефонная связь, телевидение, радиолокация и др.). В промышленности ЭМИ радиоволнового диапазона используются для индукционного и диэлектрического нагрева материалов. В научных исследованиях ЭМИ используются в радиоспектроскопии, в радиоастрономии, в медицине - при физиотерапии, а также в практике хирургов и онкологов. Вблизи воздушных линий электропередач, трансформаторных подстанций, электроприборов, в том числе и бытовых, ЭМИ возникают как побочный неиспользуемый фактор. Основными источниками образования электромагнитных полей радиочастот в окружающей среде служат антенные системы радио - и телерадиостанций, радиолокационных станций, а также систем мобильной радиосвязи и воздушные лини электропередач.

Организм человека весьма чувствителен к воздействию ЭМП радиочастот. К критическим органам и системам относятся ЦНС, глаза, гонады, а по мнению некоторых авторов – и кроветворная система. Биологическое действие этих излучений зависит от длины волны (или частоты излучения), режима генерации (непрерывный, импульсный) и условий воздействия на организм (постоянное, прерывистое, общее, местное), интенсивности и длительности воздействия.

Биологическая активность убывает с увеличением длины волны (или снижения частоты излучения). Наиболее активными являются санти-, дециметровый диапазоны радиоволн. Поражения вызываемые ЭМИ РЧ, могут быть острыми или хроническими. Острые возникают при действии значительных тепловых интенсивностей излучения. Они встречаются крайне редко – при авариях или грубых нарушениях техники безопасности на радиолокационных станциях. Более характерны профессиональные хронические поражения, выявляемые как правило после нескольких лет работы с источниками ЭМИ микроволнового диапазона. В клинической картине выделяют три ведущих синдрома: астенический (головная боль, повышенная утомляемость, раздражительность, периодически возникающие боли в области сердца), астеновегетативный (гипотония, брадикардия, нейроциркуляторная дистония гипертонического типа) и гипоталамический (приступы пароксизмальной мерцательной аритмии, желудочковой экстрасистолии с последующим развитием раннего атеросклероза, ишемической болезни сердца, гипертонической болезни).

В нормативных документах нормируется энергетическая экспозиция (ЭЭ) для электрического (Е) и магнитного (Н) полей, а также плотность потока энергии (ППЭ) за рабочий день.

К числу аппаратов, работающих в области радиочастотного диапазона, относятся и видеодисплеи терминалов персональных компьютеров. Если в условиях производства можно ограничивать время работы с видеотерминалами, то в домашних условиях время использования персональных компьютеров вообще не поддается контролю. ЭМП персональных компьютеров могут оказывать на организм человека неблагоприятное действие. Известно, что переменное магнитное поле вызывает ощутимые физиологические реакции и может приводить к нарушениям деятельности иммунной, нервной и сердечно-сосудистой систем организма. Это излучение влияет на биологические процессы в организме человека, изменяя электролитный состав жидкостей организма и потребность организма в ряде минеральных веществ. Происходит перекос в минеральном обмене. Это объясняется либо непосредственным влиянием ЭМП персональных компьютеров на ионные каналы клеточных мембран, либо активацией надпочечников, гормоны которых влияют на минеральный обмен. Имеются сведения, что при работе с дисплеями в течение 2-6 и более часов в день повышается риск заболевания экземой из-за наличия электростатического и возможно, электромагнитного полей, которые являются причиной повышения в воздухе рабочей зоны положительных аэроинов.

Различные сигналы, исходящие от мониторов, могут быть причиной плохого самочувствия из-за повышения судорожной готовности организма, особенно у детей. При длительной работе на компьютере могут наблюдаться психологические расстройства, раздражительность, нарушение сна. Отмечается снижение работоспособности и сдвиги в функциональном состоянии организма, такие, как нарушение цветоразличения, головная боль, возникновение негативного эмоционального состояния (чаще депрессия). При этом снижается скорость восприятия и переработки информации, ухудшается концентрация внимания, увеличивается коэффициент утомляемости.

Для видеодисплейных терминалов персональных компьютеров (видеодисплейных терминалов, ВДТ) установлены конкретные ПДУ ЭМИ.

6.4. ЭМП промышленной частоты (ЭМП ПЧ ). В последние годы ЭМП частотой 50 Гц выделены в самостоятельный диапазон Основными источниками их являются различные виды производственного и бытового электрооборудования переменного тока, а также подстанции и воздушные линии электропередачи сверхвысокого напряжения (СВН). Гигиеническая оценка ЭПМ ПЧ осуществляется раздельно по электрическому и магнитному полям (ЭП и МП ПЧ).

У рабочих, подвергающихся производственному воздействию ЭМП ПЧ, отмечены изменения состояния здоровья в виде жалоб, говорящих в основном об изменениях в неврологическом статусе организма (головная боль, повышенная раздражительность, утомляемость, вялость, сонливость), а также о нарушениях деятельности сердечно-сосудистой системы (тахикардия и брадикардия, артериальная гипертензия или гипотония, лабильность пульса, гипргидроз) и желудочно-кишечного тракта. Возможны изменения состава периферической крови – умеренная тромбоцитопения, нейтрофильный лейкоцитоз, моноцитоз, тенденция к ретикулопении.

ПДУ ЭП ПЧ устанавливаются 5 кВ/м для полного рабочего дня, а максимальный ПДУ для воздействия не более 10 минут составляет 25 кВ/м. в интервале интенсивностей 5-20 Кв/м допустимое время пребывания определяется по формуле

где Т – допустимое время пребывания в ЭП в часах;

Е – напряженность воздействия ЭП в контролируемой зоне в кВ/м.

Предельно допустимые уровни МП устанавливаются в зависимости от времени пребывания персонала для условий общего (на все тело) и локального (на конечности) воздействия по напряженности поля (Н) или магнитной индукции (В).

6.5. Лазерное излучение . Лазеры применяются в промышленности, медицине, военной и космической областях и даже в шоу-бизнесе.

Действие лазерного излучения на человека весьма сложно. Оно зависит от параметров лазерного излучения (ЛИ) – от длины волны, мощности (энергии) излучения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических особенностей облучаемой ткани (глаза, кожа). Энергия лазерного излучения, поглощаемая тканями преобразуется в другие виды энергии (тепловую, механическую, энергию фотохимических процессов),что может вызвать ряд эффектов воздействия: тепловой, ударный, светового давления.

Наибольшую опасность лазерное излучение представляет для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38-0,7 мкм) и ближнего инфракрасного (0,75-1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18-,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужную оболочку и хрусталик. Поскольку лазерное излучение фокусируется преломляющей системой глаза, то, фокусируясь на сетчатке плотность мощности на сетчатке может быть в 1000-10000 раз выше, чем на роговице. Короткие импульсы (0,1-10 -14 с), генерируемые лазерами, могут вызывать поражение глаз быстрее, чем сработает защита (мигательный рефлекс – 0,1 сек).

Кожа также является критическим органом при действии лазерного излучения. Эффект лазерного излучения на кожу зависит от длины волны и уровня пигментации кожи. От пигментированной кожи лучи хуже отражаются, а лазерное излучение в дальней инфракрасной области сильно поглощаются водой, составляющей до 80 % тканей кожи, что влечет за собой опасность ожогов.

Хроническое воздействие низкоэнергетического рассеянного излучения (на уровне ПДУ и ниже) может приводить у лиц, обслуживающих лазеры, к невротическим состояниям, сердечно-сосудистым расстройствам и т. п.

В основу установления ПДУ лазерных излучений положен принцип определения минимальных (пороговых) повреждений в облученных тканях (сетчатка, роговица глаза, кожа). Нормируемыми параметрами являются энергетическая экспозиция Н (Дж х м 2) и облученность Е (Вт/м 2), а также энергия W(Дж) и мощность Р (Вт).

Широкий диапазон волн, разнообразие параметров лазерного излучения и вызываемых биологических эффектов затрудняет обоснование гигиенических нормативов. Поэтому нормирование ведется на основе математического моделирования с учетом характера распределения энергии и абсорбционных характеристик облучаемых тканей.

Понятие "неионизирующие излучения"

Из курса физики хорошо известно, что распространение энергии происходит в виде мелких частиц и волн, процесс испускания и распространения которой называется излучением .

Различают 2 основных вида излучения по воздействию на предметы и живые ткани :

  1. Ионизирующее излучение . Это потоки элементарных частиц, образующиеся в результате деления атомов – радиоактивное излучение, альфа, бета, гамма, рентгеновское излучение. К этому же виду излучения относится гравитационное излучение и лучи Хокинга ;
  2. Неионизирующие излучения . По своей сути это электромагнитные волны , длиной больше $1000$ нм и выделенной энергией меньше $10$ кэВ. Излучение происходит в виде микроволн, с выделением света и тепла.

Неионизирующее излучение в отличие от первого, не разрывает связи между молекулами вещества, на которое воздействует. Но, надо сказать, что здесь есть свои исключения, например, УФ-лучи могут ионизировать вещество. К электромагнитным относятся высокочастотные рентгеновские и гамма лучи, только они более жесткие и ионизируют вещество.

Остальные электромагнитные излучения являются неионизирующими и вмешаться в структуру материи не могут, потому что их энергии для этого не хватает. Видимое световое и уф-излучения тоже неионизирующие, а световое излучение называют часто оптическим . Образуется оно при нагревании тел и своим спектром близко к инфракрасным лучам.

Инфракрасное излучение широко применяется в медицинской практике. Его используют для улучшения метаболизма, стимуляции кровообращения, дезинфекции продуктов питания. Однако, излишний нагрев приводит к иссушению слизистой оболочки глаза, а максимальная мощность излучения способна разрушить молекулу ДНК.

Способностью к ионизации может обладать ультрафиолетовое излучение, приближенное к рентгеновскому. Уф-лучи способны вызвать различные мутации, ожоги кожи, роговицы глаз. Медицина с помощью УФ-лучей синтезирует в коже витамин D3. C их помощью обеззараживают воду, воздух, стерилизуют оборудование.

Неионизирующие электромагнитные излучения бывают природного и искусственного происхождения. Природным источником является Солнце, посылающее все виды излучения. В полном объеме до поверхности планеты они не доходят. Благодаря атмосфере Земли, слою озона, влажности, углекислому газу их вредное воздействие смягчается. Молния, космические объекты могут стать естественными источниками для радиоволн. Любое тело, нагретое до нужной температуры, способно испускать тепловые инфракрасные лучи, несмотря на то, что основное излучение исходит от искусственных объектов. В данном случае к основным источникам можно отнести обогреватели, горелки, имеющиеся в каждом доме лампы накаливания.

Поскольку радиоволны передаются по любым электрическим проводникам, то все электроприборы становятся искусственными источниками .

Сила воздействия электромагнитного излучения зависит от длины волны, частоты и поляризации. Волны большой длины на объект переносят меньше энергии, поэтому являются менее вредными.

Воздействие на человека неионизирующего излучения имеет $2$ стороны – длительное воздействие приносит вред здоровью, умеренные дозы могут быть полезны .

Воздействие электромагнитных полей на человека

Электромагнитные поля, так или иначе, оказывают свое воздействие на человека.

Это воздействие связано с:

  1. напряженностью электрического и магнитного полей;
  2. плотностью потока энергии;
  3. частотой колебаний;
  4. режимом облучения;
  5. размером облучаемой поверхности тела;
  6. индивидуальными особенностями организма.

Усугубляет опасность воздействия излучения тот факт, что органы чувств человека его не могут обнаружить. На человека электростатическое поле (ЭСП) воздействует в виде прохождения через него слабого, в несколько микроампер, тока, без наблюдения электротравм. Но, у людей может быть рефлекторная реакция на электрический ток, в этом случае возможна механическая травма , например, можно удариться об элементы конструкции, расположенной рядом. Достаточно чувствительны к электростатическим полям центральная нервная система, анализаторы, сердечнососудистая система. Раздражительность, головная боль, нарушения сна – это те проявления, которые наблюдаются у людей, работающих в зоне воздействия ЭСП.

Магнитные поля (МП) могут действовать непрерывно и прерывисто, степень воздействия которых зависит от того, насколько сильно напряжено поле в пространстве вблизи магнитного устройства. От того, где расположен человек по отношению к МП и режим его труда, зависит получаемая доза. Зрительные ощущения отмечаются при действии переменного магнитного поля , но, с прекращением воздействия эти ощущения исчезают. Серьезные нарушения происходят в условиях хронического воздействия МП, превышающих предельно допустимые уровни. В этом случае наблюдаются нарушение функций ЦНС, сердечнососудистой и дыхательной системы, пищеварительного тракта, происходят изменения в крови. Нарушается ритм и замедляется частота сердечных сокращений при постоянном воздействии ЭМП промышленной частоты.

Тело человека, состоящее из атомов и молекул, под воздействием ЭМП радиочастотного диапазона, поляризуется, происходит следующее:

  1. В направлении распространения электромагнитного поля ориентируются полярные молекулы, например, молекулы воды;
  2. Появляются после воздействия ионные токи в электролитах, а это жидкие составляющие тканей, крови;
  3. Ткани человека нагреваются, что вызывается переменным электрическим полем. Происходит это как за счет переменной поляризации диэлектрика, так и за счет появляющейся проводимости тока.

Следствием поглощения энергии электромагнитного поля является тепловой эффект . При нарастающей напряженности и времени воздействия указанные эффекты проявляются сильнее.

Электромагнитные поля сильнее и интенсивнее воздействуют на органы, содержащие большое количество воды и будут примерно в $60$ раз выше по сравнению с воздействием на органы, с низким содержанием воды. Если длина электромагнитной волны будет увеличена, то глубина её проникновения возрастает. Ткани неравномерно нагреваются в результате различий диэлектрических свойств, возникают макро и микро тепловые эффекты с перепадом температур. Слаборазвитая сосудистая система испытает шок, который проявится в недостаточном кровообращении глаз, мозга, почек, желудка, желчного пузыря, мочевого пузыря.

Одним из немногих специфических поражений , которые вызываются электромагнитными излучениями, являются глаза и возможное развитие катаракты. Это поражение вызывается электромагнитным излучением радиочастот в диапазоне $300$ МГц… $300$ ГГц при плотности потока энергии выше $10$ мВт/кв. см. Характерными при длительном действии ЭМП различных диапазонов длин волн, считаются функциональные расстройства в ЦНС с часто выраженными сдвигами эндокринно-обменных процессов и состава крови, работоспособность, как правило, снижается. Изменения носят обратимый характер только на ранней стадии.

Неионизирующие электромагнитные поля

Заряженные частицы характеризуются электромагнитным взаимодействием . Энергия между этими частицами передается фотонами электромагнитного поля.

В воздухе длина электромагнитной волны λ(м) связана с её частотой ƒ(Гц) соотношением λƒ = с, ,где с – скорость света, м/с.

Спектр колебаний с частотой $10$ $17$ Гц имеют неионизирующие электромагнитные поля, в то время как ионизирующие – от $10$ $17$ до $10$ $21$ Гц.

Неионизирующие электромагнитные поля , имеющие естественное происхождение, являются постоянно действующим фактором. Их источники – атмосферное электричество, солнечное и галактическое радиоизлучение, электрическое и магнитное поля планеты.

С такими источниками как высоковольтные линии электропередач, использующимися на промышленных предприятиях источниками магнитных полей чаще всего связаны электромагнитные поля промышленной частоты .

В зонах, близко расположенных к электрифицированным железным дорогам, возникающие магнитные поля представляют значительную опасность . Даже в зданиях, расположенных недалеко от этих зон, обнаруживаются магнитные поля высокой интенсивности.

Замечание 1

На бытовом уровне к источникам электромагнитных полей и излучений относятся телевизоры, печи СВЧ, радиотелефоны и ряд других устройств, работающих в широком диапазоне частот. При влажности менее $70$ % электростатические поля создают паласы, накидки, занавески и др. Такая бытовая техника как микроволновая печь промышленного исполнения не опасна. Но, в том случае, если их защитные экраны неисправны, утечка электромагнитного излучения повышается. Экраны телевизоров и дисплеев даже при длительном воздействии на человека не будут представлять опасности как источники электромагнитного излучения при условии, что расстояние от экрана более $30$ см.

Неионизирующие электромагнитные поля и излучения. Электромагнитное взаимодействие характерно для заряженных частиц. Переносчиком энергии между такими частицами являются фотоны электромагнитного поля или излучения. Длина электромагнитной волны (м) в воздухе связана с ее частотой f (Гц) соотношением λf = с, где с скорость света.

Электромагнитные поля и излучения разделяют на неионизирующие, в том числе лазерное излучение, и ионизирующие. Неионизирующие электромагнитные поля (ЭМП) и излучения (ЭМИ) имеют спектр колебаний с частотой до 10 21 Гц.

Неионизирующие электромагнитные поля естественного происхождения являются постоянно действующим фактором. К ним относятся: атмосферное электричество, радиоизлучения Солнца и галактик, электрические и магнитные поля Земли.

В неионизирующие техногенные источники электрических и магнитных полей и излучений. Их классификация приведена в табл. 2.9.

Применение техногенных ЭМП и ЭМИ различных частот систематизировано в табл. 2.10.

Основными источниками электромагнитных полей радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки (в зонах, примыкающих к предприятиям). ЭМП промышленной частоты чаще всего связаны с высоковольтными линиями (ВЛ) электропередачи, источниками магнитных полей, применяемыми на промышленных предприятиях.

Таблица 2.9

Классификация неионизирующих техногенных излучений


Показатель

диапазон частот

длина волны

Статическое поле

Электрическое





Магнитное





Электромагнитное поле

Электромагнитное поле промышленной частоты

50 Гц



Электромагнитное излучение радиочастотного диапазона (ЭМИ РЧ)

От 10 кГц до 30 кГц

30 км

От 30 кГц до 3 МГц

100 м

От 3 МГц до 30 МГц

10 м

От 30 МГц до 50 МГц

6 м

От 50 МГц до 300 МГц

1 м

От 300 МГц до 300 ГГц

1 мм

Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100–150 м. При этом внутри зданий, расположенных в этих зонах , плотность потока энергии, как правило, превышает допустимые значения.

Таблица 2.10

Применение электромагнитных полей и излучений


Частота ЭМП и ЭМИ

Технологический процесс, установка, отрасль

> 0 до 300 Гц

Электроприборы, в том числе бытового назначения, высоковольтные линии электропередачи, трансформаторные подстанции, радиосвязь, научные исследования, специальная связь

0,3–3 кГц

Радиосвязь электропередачи, индукционный нагрев металла, физиотерапия

3–30 кГц

Сверхдлинноволновая радиосвязь, индукционный нагрев металла (закалка, плавка пайка), физиотерапия, УЗ-установки

30–300 кГц

Радионавигация, связь с морскими и воздушными судами, длинноволновая радиосвязь, индукционный нагрев металлов, электрокоррозионная обработка, ВДТ, УЗ-установки

0,3–3 МГц

Радиосвязь и радиовещание, радионавигация, индукционный и диэлектрический нагрев материалов, медицина

3–30 МГц

Радиосвязь и радиовещание, диэлектрический нагрев, медицина, нагрев плазмы

30–300 МГц

Радиосвязь, телевидение, медицина (физиотерапия, онкология), диэлектрический нагрев материалов, нагрев плазмы

0,3–3 ГГц

Радиолокация, радионавигация, радиотелефонная связь, телевидение, микроволновые печи, физиотерапия, нагрев и диагностика плазмы

3–30 ГГц

Радиолокация и спутниковая связь, метеолокация, радиорелейная связь, нагрев и диагностика плазмы, радиоспектроскопия

30–300 ГГц

Радары, спутниковая связь, радиометеорология, медицина (физиотерапия, онкология)

Значительную опасность представляют магнитные поля, возникающие в зонах, прилегающих к электрифицированным железным дорогам. Магнитные поля высокой интенсивности обнаруживаются даже в зданиях, расположенных в непосредственной близости от этих зон.

В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70%) создают паласы, накидки, занавески и т.д. Микроволновые печи в промышленном исполнении не представляют опасности, однако неисправность их защитных экранов может существенно повысить утечки электромагнитного излучения. Экраны телевизоров и дисплеев как источники электромагнитного излучения в быту не опасны даже при длительном воздействии на человека, если расстояния от экрана превышают 30 см.

Электростатическое поле (ЭСП) полностью характеризуется напряженностью электрического поля Е (В/м). Постоянное магнитное поле (ПМП) характеризуется напряженностью магнитного поля Н (А/м), при этом в воздухе 1 А/м – 1,25 мкТл, где Тл – тесла (единица напряженности магнитного поля).

Электромагнитное поле (ЭМП) характеризуется непрерывным распределением в пространстве, способностью распространяться со скоростью света, воздействовать на заря­женные частицы и токи. ЭМП является совокупностью двух взаимосвязанных переменных полей – электрического и магнитного, которые характеризуются соответствующими векторами напряженности Е (В/м) и Н (А/м).

В зависимости от взаимного расположения источника электромагнитного излучения и места пребывания человека необходимо различать ближнюю зону (зону индукции), промежуточную зону и дальнюю зону (волновую зону) или зону излучения. При излучении от источников (рис. 2.11) ближняя зона простирается на расстояние λ/2 π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний , равных λ*2π, т.е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.

Рис. 2.11. Зоны, возникающие вокруг элементарного источника

В зоне индукции, в которой еще не сформировалась бегущая электромагнитная волна, электрическое и магнитное поля следует считать независимыми друг от друга, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным . Для промежуточной зоны характерно наличие, как поля индукции, так и распространяющейся электромагнитной волны. Для волновой зоны (зоны излучения) характерно наличие сформированного ЭМП, распространяющегося в виде бегущей электромагнитной волны. В этой зоне электрическая и магнитная составляющие изменяются синфазно и между их средними значениями за период существует постоянное соотношение

где ρ в – волновое сопротивление, Ом; , ε – электрическая постоянная; μ – магнитная проницаемость среды.

Колебания векторов E и Н происходят во взаимно перпендикулярных плоскостях. В волновой зоне воздействие ЭМП определяется плотностью потока энергии, переносимой электромагнитной волной. При распространении электромагнитной волны в проводящей среде векторы Е и Н связаны соотношением

где ω – круговая частота электромагнитных колебаний, Гц; v – удельная электропроводность вещества экрана; z – глубина проникновения электромагнитного поля.

При распространении ЭМП в вакууме или в воздухе, где ρ в = 377 Ом, Е = 377Н. Электромагнитное поле несет энергию, определяемую плотностью потока энергии (1 = ЕН (Вт/м 2)), которая показывает, какое количество энергии протекает за 1 с сквозь площадку в 1 м 2 , расположенную перпендикулярно движению волны.

При излучении сферических волн плотность потока энергии в волновой зоне может быть выражена через мощ­ность Р ист, подводимую к излучателю:

где R – расстояние до источника излучения, м.

Воздействие электромагнитных полей на человека зависит от напряженностей электрического и магнитного полей, потока энергии, частоты колебаний, наличия сопутствую­щих факторов, режима облучения, размера облучаемой по­верхности тела и индивидуальных особенностей организма. Установлено также, что относительная биологическая ак­тивность импульсных излучений выше непрерывных. Опасность воздействия усугубляется тем, что оно не обнаруживается органами чувств человека.

Воздействие электростатического поля (ЭСП) на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на электрический ток (резкое отстранение от заряженного тела) возможна механическая травма при ударе о рядом расположенные элементы конструкций, падение с высоты и т.д. Исследование биологических эффектов показало, что наиболее чувствительны к электростатическому полю ЦНС, сердечно-сосудистая система, анализаторы. Люди, работающие в зоне воздействия ЭСП, жалуются на раздражительность, головную боль, нарушения сна и др.

Воздействие магнитных полей (МП) может быть постоянным (от искусственных магнитных материалов) и импульсным. Степень воздействия МП на работающих зависит от его максимальной напряженности в пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения по отношению к МП и режима труда. При действии переменного магнитного поля наблюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия. При постоянной работе в условиях хронического воздействия МП , превышающих предельно допустимые уровни, наблюдаются нарушения функций ЦНС, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Длительное действие приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца.

При постоянном воздействии ЭМП промышленной частоты наблюдаются нарушения ритма и замедление частоты сердечных сокращений. У работающих в зоне ЭМП промышленной частоты могут наблюдаться функциональные нарушения ЦНС и сердечно-сосудистой системы, а также изменения в составе крови.

При воздействии ЭМП радиочастотного диапазона атомы и молекулы, из которых состоит тело человека , поляризуются. Полярные молекулы (например, воды) ориентируются по направлению распространения электромагнитного поля; в электролитах, которыми являются жидкие составляющие тканей, крови и т.п., после воздействия внешнего поля появляются ионные токи. Переменное электрическое поле вызывает нагрев тканей человека как за счет переменной поляризации диэлектрика (сухожилия, хрящи и т.д.), так и за счет появления токов проводимости. Тепловой эффект является следствием поглощения энергии электромагнитного поля. Чем больше напряженность поля и время воздействия, тем сильнее проявляются указанные эффекты. Избыточная теплота отводится до известного предела путем увеличения нагрузки на механизм терморегуляции. Однако, начиная с величины I = 10 мВт/см 2 , называемой тепловым порогом, организм не справляется с отводом образующейся теплоты , и температура тела повышается, что приносит вред здоровью.

Наиболее интенсивно электромагнитные поля воздействуют на органы с большим содержанием воды. При одинаковых значениях напряженности поля коэффициент погло­щения в тканях с высоким содержанием воды примерно в 60 раз выше, чем в тканях с ее низким содержанием . С уве­личением длины волны глубина проникновения электро­магнитных волн возрастает; различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.

Перегрев особенно вреден для тканей со слаборазвитой сосудистой системой или с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), которое обнаруживается не сразу, а через несколько дней или недель после облучения. Развитие катаракты является одним из немногих специфических поражений, вызываемых электромагнитными излучениями радиочастот в диапазоне 300 МГц – 300 ГГц при плотности потока энергии свыше 10 мВт/см 2 . Помимо катаракты при воздействии ЭМП возможны ожоги роговицы.

Для длительного действия ЭМП различных диапазонов длин волн при умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств в ЦНС с нерезко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение или понижение давления, снижение частоты пульса, изменение проводимости в сердечной мышце, нервно-психические расстройства, быстрое развитие утомления. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМП происходит стойкое снижение работоспособности. В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового (СВЧ) поля. Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечно-сосудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления.

К неионизирующим электромагнитным излучениям и полям (НЭ-МИП) относят электромагнитные излучения радиочастотного и оптического диапазонов, а также условно - статические электрические и постоянные магнитные поля, поскольку последние, строго говоря, излучениями не являются.

Электромагнитные излучения (ЭМИ) распространяются в виде электромагнитных волн, основными характеристиками которых являются: длина волны --X, м, частота колебаний -- f, Гц и скорость распространения -- V, м/с. В свободном пространстве скорость распространения ЭМИ равна скорости света -- С = 3 * 108 м/с.

Неионизирующие электромагнитные излучения и поля естественного происхождения. До недавнего времени основное внимание исследователей, занимающихся проблемой гигиенического нормирования неионизирующих электромагнитных излучений (НЭМИ), было сосредоточено на изучении биоэффектов ЭМИ антропогенного происхождения, уровни которых существенно превышают естественный электромагнитный фон Земли. Вместе с тем, в последние десятилетия была убедительно доказана важнейшая роль ЭМИ естественного происхождения в становлении жизни на Земле и ее последующих развитии и регуляции.

Биологическое действие неионизирующих электромагнитных излучений и полей естественного происхождения

Особое внимание при изучении влияния естественных ЭМИ на живую природу уделяется геомагнитному полю, как одному из важнейших факторов окружающей среды. Показано, что у различных организмов (от бактерий до млекопитающих) выявляется целый ряд реакций со стороны различных систем на изменение геомагнитного поля (Дубров А.П., 1974; Холодов Ю.А., 1976, 1982; Моисеева Н.И., Любицкий Р.И., 1986). Получены материалы, которые не только подтверждают чувствительность организмов к геомагнитному полю, но и не исключают у многих из них способности воспринимать содержащуюся в нем пространственно-временную информацию. Это свидетельствует о том, что геомагнитное поле является существенным компонентом среды обитания. Изучение магниторецепции у человека дало основание считать, что она представлена как в структурах мозга, так и надпочечниках (Дюрвард Д.Скайлс, 1989).В настоящее время стало ясно, что естественные электромагнитные поля следует рассматривать как один из важнейших экологических факторов. И если осуществление жизнедеятельности в условиях воздействия естественных ЭМИ является таким значимым и одновременно „привычным" для биосистем, то попадание в ситуацию, когда их уровни претерпевают резкие колебания или значительно снижены, может иметь серьезные негативные последствия.

Статические электрические поля.

Статические электрические поля (СЭП) представляют собой поля неподвижных электрических зарядов, либо стационарные электрические поля постоянного тока.

СЭП достаточно широко используются в народном хозяйстве для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и т.д.

Вместе с тем существует целый ряд производств и технологических процессов по изготовлению, обработке и транспортировке диэлектрических материалов, где отмечается образование электростатических зарядов и нолей, вызванных электризацией перерабатываемого продукта (текстильная, деревообрабатывающая, целлюлозно-бумажная, химическая промышленности и др.). В энергосистемах СЭП образуются вблизи работающих электроустановок, распределительных устройств и линий электропередачи постоянного тока высокого напряжения. При этом имеет место также повышенная ионизация воздуха (например, в результате коронных разрядов) и возникновение ионных токов.

Основными физическими параметрами СЭП являются напряженность поля и потенциалы его отдельных точек. Напряженность СЭП -- векторная величина - определяется отношением силы, действующей па точечный заряд к величине этого заряда, измеряется в вольтах на метр (В/м). Энергетические характеристики СЭП определяются потенциалами точек поля.

Биоэффекты сочетанных влияний па организм СЭП и аэроионов свидетельствуют о синергизме в действии факторов. При этом превалирующим фактором выступает ионный ток, возникающий в результате движения аэроионов СЭП. Следует отметить, что механизмы влияния СЭП и ответных реакций организма остаются неясными и требуют дальнейшего изучения.

Постоянные магнитные поля.

Источниками постоянных магнитных полей (ПМП) па рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электролитные ванны и другие электротехнические устройства).

Постоянные магниты и электромагниты широко используются в приборостроении, в магнитных шайбах подъемных кранов и других фиксирующих устройствах, в магнитных сепараторах, в устройствах для магнитной обработки воды, в магнитогидродинамических (МГД) генераторах, установках ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР), а также в физиотерапевтической практике.

Основными физическими параметрами, характеризующими ПМП, являются: напряженность поля (Н), магнитный поток (Ф) и магнитная индукция (В). В системе СИ единицей измерения напряженности магнитного поля является ампер на метр (А/м), магнитного потока - Вебер (Вб), магнитной индукции (или плотности магнитного потока) -- тесла (Тл).

Биологическое действие постоянных магнитных полей.

Живые организмы весьма чувствительны к воздействию ПМП. Имеется большое количество литературы по влиянию ПМП на организм человека и животных. Описаны результаты исследования влияния ПМП на различные системы и функции биообъектов различного уровня организации. Принято считать, что наиболее чувствительными к воздействию ПМП являются системы, выполняющие регуляторные функции (нервная, сердечно-сосудистая, нейроэндокринная и др.).

Следует отметить известную противоречивость взглядов по вопросу биологической активности ПМП. Эксперты ВОЗ на основании совокупности имеющихся данных пришли к заключению, что уровни ПМП до 2 Тл не оказывают существенного влияния па основные показатели функционального состояния организма животных.

Отечественными исследователями (Вялов A.M., Комарова А.А., Сыромятников и др.) описаны изменения в состоянии здоровья у лиц, работающих с источниками ПМП. Наиболее часто они проявляются в форме вегетодистоний, астеновегетативного и периферического вазовегетативного синдромов или их сочетания. Характерны субъективные жалобы астенического характера, функциональные сдвиги со стороны сердечно-сосудистой системы (брадикардия, иногда тахикардия, изменение на ЭКГ зубца Т), тенденция к гипотонии. Кровь достаточно устойчива к воздействию ПМП. Отмечается лишь тенденция к снижению количества эритроцитов и содержания гемоглобина, а также умеренный лейко - и лимфоцитоз.

Периферический вазовегетативный синдром (или вегетативно-сенситивный полиневрит) характеризуется вегетативными, трофическими, сенситивными расстройствами в дистальном отделе рук, изредка сопровождающимися легкими двигательными и рефлекторными нарушениями.

Электрические и магнитные поля промышленной частоты.

Электромагнитные поля (ЭМП) промышленной частоты (ПЧ) являются частью сверхнизкочастотного диапазона радиочастотного спектра, наиболее распространенной как в производственных условиях, так и в условиях быта. Диапазон промышленной частоты представлен в нашей стране частотой 50 Гц (в ряде стран Американского континента 60 Гц). Основными источниками ЭМП ПЧ, создаваемых в результате деятельности человека, являются различные типы производственного ибытового электрооборудования переменного тока, в первую очередь, подстанции и воздушные линии электропередачи сверхвысокого напряжения (СВН). Поскольку соответствующая частоте 50 Гц длина волны составляет 6000 км, человек подвергается воздействию фактора в ближней зоне. В связи с указанным гигиеническая оценка ЭМП ПЧ осуществляется раздельно по электрическому и магнитному полям (ЭП и МП ПЧ).

Электромагнитное поле (ЭМП) является особой формой материи. Электромагнитное поле (ЭМП) распространяется в виде электромагнитных волн. Представляющие собой взаимосвязанные колебания электрического и магнитного полей, составляющие единое электромагнитное поле.

Вследствие особенностей ЭМП и различного влияния на организм человека электромагнитных волн разной длины принято раздельное нормирование низкочастотных электромагнитных полей радиочастотного диапазона (10-30 кГц), ЭМП в диапазоне 30кГц-300 ГГц, статических электрических полей, полей создаваемых постоянными магнитами, ЭМП промышленной частоты и ЭМП создаваемым видеодисплеями, ПЭВМ и системами сотовой связи.

Источниками постоянного магнитного поля (ПМП) могут быть физиотерапевтическая аппаратура или диагностическое оборудование (установки ядерного магнитного резонанса).

Источниками ЭМП промышленной частоты (ЭМП ПЧ) являются элементы токопередающих систем различного напряжения (линии электропередачи, распределительные устройства и др.), электротранспорт, различные типы электрооборудования.

Уровни ЭМП искусственного происхождения, созданных человеком, существенно превышают уровни естественных полей.

В последние годы широкое распространение получили такие источники ЭМП, как видеодисплейные терминалы (ВДТ). В ООО «Уренгойгазпром» насчитывается большое количество пользователей персональных электронно-вычислительных машин (ПЭВМ) и видеодисплейных терминалов (ВДТ), и число их продолжает постоянно увеличиваться. В Обществе осуществляется работа по замерам и оценке электромагнитных излучений на рабочих местах пользователей ПЭВМ.

Современные ПЭВМ являются оборудованием с потреблением до 200-250 Вт, содержащим несколько электро- и радиоэлектронных устройств, поэтому вокруг ПЭВМ создаются поля с широким частотным спектром и пространственным распределением, такие как:

Электростатическое поле,

Переменные электрические поля,

Переменные магнитные поля.

Особенностями характеристик излучений ВДТ является достаточно широкий спектр частот излучения.

Источниками переменных электрических и магнитных полей в ПЭВМ являются узлы, в которых присутствует переменное высокое напряжение, и узлы, работающие с большими токами. Типичное пространственное распределение переменного магнитного поля вокруг ПЭВМ показано на рис.2 , а переменного электрического поля (в горизонтальной плоскости) на рис.3.

Компьютерная техника является источником целого ряда неблагоприятных физических факторов воздействия на состояние и здоровье пользователей. Следствием неблагоприятного воздействия компьютерной техники на здоровье пользователей можно выделить следующие наиболее важные последствия: заболевания глаз и зрительный дискомфорт, изменения костно-мышечной системы, нарушения, связанные со стрессом, кожные заболевания, неблагоприятные исходы беременности. Установлено, что пользователи персональных компьютеров подвержены стрессам в значительно большей степени, чем работники из любых других профессиональных групп. К другим обнаруженным жалобам на здоровье относятся «пелена перед глазами», сыпь на лице, хронические головные боли, тошнота, головокружения, лёгкая возбудимость и депрессии, быстрая утомляемость, невозможность долго концентрировать внимание, снижение трудоспособности и нарушения сна и многие другие.

Выявление, исследование причин, анализ и устранение таких экстремальных полей, на рабочих местах, представляет собой серьёзную задачу и является необходимым условием безопасной эксплуатации ПЭВМ.

Отнесение условий труда к тому или иному классу вредности и опасности при воздействии неионизирующих электромагнитных полей и излучений осуществляется в соответствии с табл. 15. Руководства Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда».

Значения ПДУ, с которыми проводится сравнение измеренных на рабочих местах величин ЭМП, определяются в зависимости от времени воздействия фактора в течение рабочего дня.

В соответствии с СанПиН 2.2.4.1191-03 "Электромагнитныеполя в производственных условиях", ГОСТ 12.1.045-84 "ССБТ. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля", ГОСТ 12.1.002-84 "ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах", ОБУВ ПеМП 50 Гц N 5060-89, СанПиН 2.2.2/2.4.1340-03 "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы", ГОСТ 12.1.006-84 "ССБТ Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля", Изменения N 1 ГОСТ 12.1.006-84, СанПиН 2.1.8/2.2.4.1190-03 "Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи", СанПиН 2.2.4.1329-03 "Требования по защите персонала от воздействия импульсных ЭМП".

Условия труда при действии неионизирующих электромагнитных полей и излучений относятся к 3 классу вредности при превышении на рабочих местах ПДУ, установленных для соответствующего времени воздействия,

с учетом значений энергетических экспозиций в тех диапазонах частот, где она нормируется. К 4 классу - для ЭП 50 Гц и ЭМП в диапазоне частот 30 МГц - 300 ГГц при превышении их максимальных ПДУ до значений, а также для широкополосных электромагнитных импульсов при превышении ПДУ напряженности электрического поля в 50 и более раз (для количества электромагнитных импульсов не более 5 в течение рабочего дня).

Ультрафиолетовое излучение.

УФИ -- это электромагнитные неионизирующие излучения оптического диапазона с длиной волны от 200 до 400 им и частотой от 1013 до 1016 Гц, подразделяемые в зависимости от биологической активности на области УФ-А, УФ-В и УФ-С.

УФ-А -- 400-320 им (синонимы: длинноволновое, ближнее УФ-излучение);

УФ-В - 320-280 им (средневолновое УФ-излучение, загарная радиация);

УФ-С - 280-200 им (коротковолновое, далекое УФ-излучение, бактерицидная радиация).

Волны менее 200 им не оказывают существенных биологических воздействий, так как радиация диапазона 200-5 им (вакуумный УФ) поглощается в атмосферном воздухе.

Солнце является источником радиации в широком диапазоне длин волн. До поверхности Земли доходит УФ в диапазоне 288-400 нм, более короткие волны УФИ Солнца поглощаются озоном стратосферы.

На долю УФИ с длиной волн 320-400 нм приходится 95% энергии, с длиной волн 290-320 нм - 0,1% энергии. В последнее время вследствие активного разрушения озонового слоя атмосферы -- естественного фильтра УФ-В - интенсивность этого излучения увеличивается.

Основными факторами, влияющими на количество и спектральный состав УФИ, которые достигают поверхности Земли, являются высота солнцестояния, тип и степень облачности, время суток, присутствие аэрозоля, смог.

Степень воздействия солнечной радиации зависит от времени суток и погодных условий, одежды, рода занятий, сложившихся социально обусловленных привычек, альбедо земли.

За последние годы отмечается возрастание УФ нагрузки па человека за счет увеличения солнечной радиации и появления новых искусственных источников этого излучения в промышленности, пауке и медицине.

Наиболее важные типы газоразрядных ламп -- это ртутные лампы низкого давления (большая часть излучаемой энергии имеет длину волны 253,7 нм, т.е. соответствует максимуму бактерицидной эффективности: используется для борьбы с вредными микроорганизмами) и высокого давления (длины волн 254, 297, 303, 313 и 365 нм широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных болезней); ксеноновые лампы высокого давления (спектр близок к солнечному над стратосферой; применяются также как ртутные); импульсные лампы (оптические спектры зависят от использованного газа - ксенон, криптон, аргон, неон и др.).

В люминесцентных лампах электрический дуговой разряд создается в ртутном паре и инертном газе при низком давлении. Спектр зависит от использованного люминофора. К этим лампам относятся источники излучения типа - люминесцентные солнечные лампы (длина волн 275-300 нм, максимум - 313 нм, эффективные с точки зрения загара); источники невидимого излучения („черного света") -- диапазон длин волн 300-410 нм, используются для обеспечения люминесценции в красках, чернилах, для фототерапии.

Источниками теплового излучения УФ являются сварка кислородно - ацетиленовыми, кислородно-водородными, плазменными горелками. Интенсивность различных диапазонов УФИ при сварке зависит от многих факторов, включая материал, из которого изготовлены электроды, разрядный ток и газ, окружающий дугу.

Монохроматическое УФИ генерируют лазеры. К ним относится группа эксимерных лазеров с длиной волны излучения 193, 248, 308, 351 нм. Основной особенностью эксимерных лазеров является, по мнению большинства исследователей, отсутствие термического действия па биологические ткани, что позволяет использовать их в медицине.

УФ эксимерные лазеры используются для обработки металлов (серебро, золото, медь), пластмасс, стекла, керамики, комбинированных материалов, причем речь идет о химическом изменении поверхности материалов.

С источниками УФИ контактируют работающие в полиграфической промышленности, химическом и деревообрабатывающем производстве, сельском хозяйстве; при кино- и телесъемках, а также в здравоохранении.

Критическими органами для восприятия УФИ являются кожа и глаза. Воздействие УФИ может вызвать специфические изменения в этих органах.

Градация условий труда при действии неионизирующих электромагнитных излучений оптического диапазона (лазерное, ультрафиолетовое) представлена в (табл.16.) Руководстве Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда».

В соответствии с СанПиН 5804-91 «Санитарные нормы и правила устройства и эксплуатации лазеров», СН № 4557-88 «Санитарными нормами ультрафиолетового излучения в производственных помещениях», МУ № 5046-89 «Профилактическое ультрафиолетовое облучение людей с (применением искусственных источников ультрафиолетового излучения)».



Copyright © 2024 Образовательный портал.