Масса атф. Функции АТФ в клетке. Строение и функции рибосом. б) химическая энергия утилизируется путём расщепления АТФ, сопряжённого с эндергоническими реакциями анаболизма и другими процессами, требующими затраты энергии

Кроме белков, жиров и углеводов в клетке синтезируется большое количество других органических соединений, которые условно можно разделить на промежуточные и конечные . Чаще всего получение определенного вещества связано с работой каталитического конвейера (большого числа ферментов), и связано с образование промежуточных продуктов реакции, на которые действует следующий фермент. Конечные органические соединения выполняют в клетке самостоятельные функции или служат мономерами при синтезе полимеров. К конечным веществам можно отнести аминокислоты , глюкозу , нуклеотиды , АТФ , гормоны , витамины .

Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ колеблется и в среднем составляет 0,04% (на сырую массу клетки). Наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ представляет собой нуклеотид, состоящий из остатков азотистого основания (аденина), моносахарида (рибозы) и трех остатков фосфорной кислоты. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты - в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью в митохондриях, при гликолизе в цитоплазме, при фотосинтезе в хлоропластах. Молекула АТФ используется в клетке за 1-2 минуты, у человека за сутки образуется и разрушается АТФ в количестве равном массе его тела.

Конечными органическими молекулами, также являются витамины и гормоны . Большую роль в жизнедеятельности многоклеточных организмов играют витамины . Витаминами считают такие органические соединения, которые данный организм синтезировать не может (или синтезирует в недостаточном количестве) и должен получать их вместе с пищей. Витамины, соединяясь с белками, образуют сложные ферменты. При недостатке в пище какого-либо витамина, не может образоваться фермент и развивается тот или иной авитаминоз. Например, недостаток витамина С приводит к цинге, недостаток витамин В 12 - к анемии, нарушению нормального образования эритроцитов.

Гормоны являются регуляторами , влияющими на работу отдельных органов и всего организма в целом. Они могут иметь белковую природу (гормоны гипофиза, поджелудочной железы), могут относиться к липидам (половые гормоны), могут быть производными аминокислот (тироксин). Гормоны образуются как животными, так и растениями.

Энергетика мышечной деятельности

Как уже указывалось, обе фазы мышечной деятельности - сокращение и расслабление - протекают при обязательном использовании энергии, которая выделяется при гидролизе АТФ.

Однако запасы АТФ в мышечных клетках незначительны (в покое концентрация АТФ в мышцах около 5 ммоль/л), и их достаточно для мышечной работы в течение 1-2 с. Поэтому для обеспечения более продолжительной мышечной деятельности в мышцах должно происходить пополнение запасов АТФ. Образование АТФ в мышечных клетках непосредственно во время физической работы называется ресинтезом АТФ и идет с потреблением энергии.

Таким образом, при функционировании мышц в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию для сокращения и расслабления, и ресинтез АТФ, восполняющий потери этого вещества. Если для обеспечения мышечного сокращения и расслабления используется только химическая энергия АТФ, то для ресинтеза АТФ пригодна химическая энергия самых разнообразных соединений: углеводов, жиров, аминокислот и креатинфосфата.

Строение и биологическая роль АТФ

Аденозинтрифосфат (АТФ) является нуклеотидом. Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. При ее гидролизе высвобождается большое количество энергии. АТФ является основным макроэргом клетки, аккумулятором энергии в виде энергии высокоэнергетических химических связей.

В физиологических условиях, т. е. при тех условиях, которые имеются в живой клетке, расщепление моля АТФ (506 г) сопровождается выделением 12 ккал, или 50 кДж энергии.

Пути образования АТФ

Аэробное окисление (тканевое дыхание)

Синонимы: окислительное фосфорилирование, дыхательное фосфорилирование, аэробное фосфорилирование.

Протекает этот путь в митохондриях.

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом (рис. 4).

Первая реакция катализируется ферментом цитрат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота. По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и НS-КоА.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации- дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата.

Рис. 4. Цикл трикарбоновых кислот (цикл Кребса)

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы. В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах или .

Во время четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. По механизму эта реакция схожа с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА; α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, НS-КоА, ФАД и НАД+.

Пятая реакция катализируется ферментом сукцинил-КоА- синтетазой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА.

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой,

в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь, сукцинатдегидрогеназа прочно связана с внутренней митохондриальной мембраной.

Седьмая реакция осуществляется под влиянием фермента фумаратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат).

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление Ь-малата в оксалоацетат.

За один оборот цикла при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ.

Анаэробное окисление

Синонимы: субстратное фосфорилирование, анаэробный синтез АТФ. Идет в цитоплазме, отщепленный водород присоединяется к какому-то другому веществу. В зависимости от субстрата выделяют два пути анаэробного ресинтеза АТФ: креатинфосфатный (креатинкиназный, алактатный) и гликолитический (гликолиз, лактатный). В нервом случае субстратом выступает креатинфосфат, во втором - глюкоза.

Эти пути протекают без участия кислорода.

Молекула АТФ(аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм) .

Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) и повторным выбросом энергии.


Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ, что объясняется невысокой стабильностью связей - например, жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок.

Выделяемая АТФ энергия имеет большую величину, потому относится к МАКРОЭРГИЧЕСКИМ соединениям. Естественно, при восстановлении ее организм вынужден будет затратить такое же количество энергии.

Общий объем АТФ стабилен и обычно не превышает 0.5 % от массы мышц. Сам по себе объем увеличить не удастся, но можно улучшить скорость восстановления молекулы, что напрямую скажется на выносливости и силе спортсмена.

Восстановление АТФ происходит несколькими способами – вначале физической активности для перезарядки расходуется большое количество ресурсов, но и скорость восстановления АТФ очень высока, за тем организм переходит на все более экономичные способы ресинтеза, в конечном итоге мышечная система имеет возможность функционировать длительное время при умеренном синтезе АТФ.

Синтез АТФ

Прежде всего следует сказать, что качественный и быстрый синтез АТФ возможен только при поддержании высокого уровня тестостерона, поскольку мужские гормоны являются главными стимуляторами биологических процессов направленных на повышение силы и выносливости. Как повысить тестостерон читайте в

этой статье.

Подробнее о синтезе АТФ

Когда запасы фосфата креатина падают, включается так называемая АНАЭРОБНАЯ выносливость. Для синтеза АТФ используется много энергии, которую организм получает из запасов гликогена, восстановление АТФ происходит медленнее, но процесс активно продолжается более 2 минут. Положительная сторона – не требуется участия кислорода, отрицательная – вырабатывается много молочной кислоты.
Анаэробный метаболизм – основа силовой выносливости.

Когда заметно истощаются запасы гликогена усиливается АЭРОБНЫЙ метаболизм, который обеспечивает медленное, но достаточно длительное производство АТФ при очень экономном расходе глюкозы.Этот процесс полностью запускается уже через три минуты интенсивной нагрузки. Обеспечение энергией в этом случае требует участия кислорода. Для производства АТФ используются сначала углеводы, за тем жиры. Жиры могут применяться и ранее вместе с углеводами - в стрессовых состояниях - см. кортизол . Когда естественные запасы энергии подходят к концу организм берет в оборот и белки мышц (в первую очередь те, что возможно быстро восстановить) .
Наибольший выход молекул АТФ происходит при расщеплении жирных кислот.

АТФ в БОДИБИЛДИНГЕ

Организм обычно бережно расходует АТФ, потому спортсмен не может потратить весь запас энергии в одном интенсивном подходе. Если тело получит небольшой перерыв, запасы АТФ частично восстановятся и можно будет снова расходовать энергию, многократно повторяя подходы можно добиться значительной нагрузки на мышцы, но и заметно исчерпать АТФ.

Для полного восстановления АТФ требуется длительное время, потому в процессе занятия от одного упражнения к другому общий уровень энергии постоянно снижается. Согласно современным исследованиям сильное утомление приходит уже через час интенсивного тренинга, что вызывает быстрое повышение кортизола (гормон усталости) в крови и занятия с этого момента приносят скорее вред, чем пользу.

После тренировки тело продолжает расходовать АТФ для восстановления химического баланса и прочих процессов, включая затраты на рост мышц. Только после завершения всех восстановительных процессов организм сможет восполнить достаточный уровень АТФ. В зависимости от интенсивности тренировки, питания, уровня тестостерона, психологического состояния и генетических особенностей полное восстановление уровня АТФ может занять от 1 до 4 суток, потому стандартные 3 тренировки в неделю это скорее усредненный расчет. Индивидуально же частоту занятий нужно подбирать по общему самочувствию (с ленью не путать).

Постоянное недостаточное восстановление уровня АТФ со временем однозначно приводит к состоянию перетренированности, требующему длительного и серьезного лечения. Как удержать на высоте уровень АТФ читайте

Циклический аденозинмонофосфат (цамф) - производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. Превращает ряд инертных белков в ферменты (цамф-зависимые протеинкиназы), под действием которых происходит ряд биохим. реакций (проведение нервного импульса).

Образование цАМФ стимулируется адреналином.

Циклический гуанозинмонофосфат (цГМФ ) - это циклическая форма нуклеотида, образующаяся из гуанозинтрифосфата (GTP) ферментом гуанилатциклазой. Образование стимулируется ацетилхолином.

· цГМФ вовлечен в регуляцию биохимических процессов в живых клетках в качестве вторичного посредника (вторичного мессенджера). Характерно, что многие эффекты цГМФ прямо противоположны цАМФ.

· цГМФ активирует G-киназу и фосфодиэстеразу, гидролизующую цАМФ.

· цГМФ принимает участизе в регуляции клеточного цикла. От соотношения цАМФ/цГМФ зависит выбор клетки: прекратить деление (остановиться в G0 фазе) или продолжить, перейдя в фазу G1.

· цГМФ стимулирует пролиферацию клеток (деление), а цАМФ подавляет

Аденозинтрифосфат (АТФ) - нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями. Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) и высвобождается порция энергии.

· Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

· АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

· АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата - вторичного посредника передачи в клетку гормонального сигнала.

· Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях

Аденозиндифосфат (АДФ) - нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ участвует в энергетическом обмене во всех живых организмах, из него образуется АТФ путём фосфорилирования:

АДФ + H3PO4 + энергия → АТФ + H2O.

Циклическое фосфорилирование АДФ и последующее использование АТФ в качестве источника энергии образуют процесс, составляющий суть энергетического обмена (катаболизма).

ФАД - флавинадениндинуклеотид - кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах - окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Никотинамидадениндинуклеотид (НАД) - динуклеотид, состоит из двух нуклеотидов, соединённых своими фосфатными группами. Один из нуклеотидов в качестве азотистого основания содержит аденин, другой - никотинамид. Никотинамидадениндинуклеотид существует в двух формах: окисленной (NAD) и восстановленной (NADH).

· В метаболизме NAD задействован в окислительно-восстановительных реакциях, перенося электроны из одной реакции в другую. Таким образом, в клетках NAD находится в двух функциональных состояниях: его окисленная форма, NAD+, является окислителем и забирает электроны от другой молекулы, восстанавливаясь в NADH, который далее служит восстановителем и отдаёт электроны.

· 1. Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

· при синтезе и окислении жирных кислот,

· при синтезе холестерола,

· обмена глутаминовой кислоты и других аминокислот,

· обмена углеводов: пентозофосфатный путь, гликолиз,

· окислительного декарбоксилирования пировиноградной кислоты,

· цикла трикарбоновых кислот.

· 2. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

· 3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

· 4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

Выпускается АТФ в форме сублингвальных таблеток и раствора для внутримышечного/внутривенного введения.

Активным веществом АТФ является натрия аденозинтрифосфат, молекулу которого (аденозин-5-трифосфата) получают из мышечной ткани животных. Кроме того, в ее состав входят ионы калия и магния, гистидин – важная аминокислота, принимающая участие в восстановлении поврежденных тканей и необходимая для правильного развития организма в период его роста.

Роль АТФ

Аденозинтрифосфат – макроэргическое (способное накапливать и передавать энергию) соединение, которое образуется в организме человека в результате различных окислительных реакций и в процессе расщепления углеводов. Содержится оно практически во всех тканях и органах, но больше всего – в скелетной мускулатуре.

Роль АТФ – улучшение метаболизма и энергообеспечения тканей. Расщепляясь на неорганический фосфат и АДФ, аденозинтрифосфат высвобождает энергию, которая используется для сокращения мышц, а также для синтеза белка, мочевины и промежуточных продуктов обмена.

Под влиянием этого вещества происходит расслабление гладкой мускулатуры, снижается артериальное давление, улучшается проведение нервных импульсов, повышается сократимость миокарда.

Учитывая вышесказанное, недостаток АТФ становится причиной ряда заболеваний, таких как дистрофия, нарушение кровообращения головного мозга, ишемическая болезнь сердца и др.

Фармакологические свойства АТФ

Благодаря оригинальной структуре молекула аденозинтрифосфата имеет характерное только для нее фармакологическое действие, не присущее никакому более из химических компонентов. АТФ нормализует концентрацию ионов магния и калия, при этом снижает концентрацию мочевой кислоты. За счет стимулирования энергетического обмена он улучшает:

  • Активность ионотранспортных систем мембран клеток;
  • Показатели липидного состава мембран;
  • Антиоксидантную защитную систему миокарда;
  • Активность мембранозависимых ферментов.

Благодаря нормализации метаболических процессов в миокарде, обусловленных гипоксией и ишемией, АТФ оказывает антиаритмическое, мембраностабилизирующее и противоишемическое действие.

Также этот препарат улучшает:

  • Сократительную способность миокарда;
  • Функциональное состояние левого желудочка;
  • Показатели периферической и центральной гемодинамики;
  • Коронарное кровообращение;
  • Сердечный выброс (благодаря чему повышается физическая работоспособность).

В условиях ишемии роль АТФ – уменьшение потребления миокардом кислорода, активация функционального состояния сердца, в результате чего уменьшается одышка во время физической активности и сокращается частота приступов стенокардии.

У пациентов с суправентрикулярной и пароксизмальной наджелудочковой тахикардией, у больных с мерцанием и трепетанием предсердий данный препарат восстанавливает синусовый ритм и уменьшается активность эктопических очагов.

Показания к применению АТФ

Как указано в инструкции к АТФ, препарат в таблетках назначают при:

  • Ишемической болезни сердца;
  • Постинфарктном и миокардитическом кардиосклерозе;
  • Нестабильной стенокардии;
  • Суправентрикулярной и пароксизмальной наджелудочковой тахикардии;
  • Нарушениях ритма различного генеза (в составе комплексного лечения);
  • Вегетативных расстройствах;
  • Гиперурикемии разного происхождения;
  • Микрокардиодистрофии;
  • Синдроме хронической усталости.

Применение АТФ внутримышечно целесообразно при полиомиелите, мышечной дистрофии и атонии, пигментной дегенерации сетчатки, рассеянном склерозе, слабости родовой деятельности, заболеваниях периферических сосудов (облитерирующем тромбангиите, болезни Рейно, перемежающейся хромоте.

Внутривенно препарат вводят с целью купирования пароксизмов наджелудочковых тахикардий.

Противопоказания к применению АТФ

В инструкции к АТФ указано, что медикамент не следует применять пациентам с повышенной чувствительностью к какому-либо из его компонентов, детям, беременным и кормящим женщинам, одновременно с большими дозами сердечных гликозидов.

Также не назначают его больным, у которых диагностированы:

  • Гипермагниемия;
  • Гиперкалиемия;
  • Острый инфаркт миокарда;
  • Тяжелая форма бронхиальной астмы и другие воспалительные заболевания легких;
  • AV-блокадой второй и третьей степени;
  • Геморрагический инсульт;
  • Артериальная гипотензия;
  • Тяжелая форма брадиаритмии;
  • Декомпенсированная сердечная недостаточность;
  • Синдром пролонгации QT.

Способ применения АТФ и режим дозирования

АТФ в форме таблеток принимают 3-4 раза в день сублингвально вне зависимости от приема пищи. Разовая дозировка может варьироваться от 10 до 40 мг. Длительность лечения определяет лечащий врач, но обычно она составляет 20-30 дней. В случае необходимости через 10-15 дней перерыва курс повторяют.

При острых сердечных состояниях разовую дозу принимают каждые 5-10 минут до исчезновения симптомов, после чего переходят на стандартный прием. Максимальная суточная дозировка в этом случае составляет 400-600 мг.

Внутримышечно АТФ вводят по 10 мг 1% раствора один раз в сутки в первые дни лечения, затем в этой же дозе – дважды в сутки или по 20 мг – один раз. Курс терапии, как правило, длится от 30 до 40 дней. При необходимости через 1-2 месяца перерыва лечение повторяют.

Внутривенно вводят 10-20 мг препарата в течение 5 секунд. Если требуется, через 2-3 минут делают повторную инфузию.

Побочные действия

В отзывах об АТФ говорится, что таблетированная форма препарата может провоцировать аллергические реакции, тошноту, чувство дискомфорта в эпигастрии, а также развитие гипермагниемии и/или гиперкалиемии (при длительном и неконтролируемом приеме).

Кроме описанных побочных эффектов, при применении внутримышечно АТФ, по отзывам, может стать причиной головной боли, тахикардии и усиления диуреза, при внутривенном введении – тошноты, гиперемии лица.

Популярные статьи Читать больше статей

02.12.2013

Все мы много ходим в течение дня. Даже если у нас малоподвижный образ жизни, мы все равно ходим – ведь у нас н...

607504 65 Подробнее

10.10.2013

Пятьдесят лет для представительниц прекрасного пола – это своеобразный рубеж, перешагнув который каждая вторая...



Copyright © 2024 Образовательный портал.