Фармакокинетика лекарственных веществ. InternetСкорая помощьМедицинский портал Что означает абсорбция в медицине

Абсорбция лекарств (лат. absorptio — поглощение, всасывание) — в медицинской практике физиологический процесс всасывания, то есть проникновение лекарственных веществ и ксенобиотиков через клеточные мембраны, а затем в кровь и лимфу. При оценке качества ЛС абсорбция является одной из основных фармакокинетических показателей, характеризующий скорость их поступления и степень проявления терапевтической эффективности. При медленной абсорбции лекарств концентрация лекарственных веществ в кровообращения может быть недостаточным для обеспечения лечебного действия, а слишком быстрой — может превышать порог допустимой терапевтической концентрации (см. Дозирование лекарств) и обуславливать нежелательные побочные действия (см. Побочное действие лекарств) или быть токсичным. Понятие А.Л. тесно связано с их биологической доступностью (см. Биодоступность). Однако их определение затрудняется невозможностью учета всех факторов и индивидуальных особенностей организма (возрастных, половых, генетических различий, наличия сопутствующих болезней) или стрессовых ситуаций, влияющих на формирование ответной реакции пациента на введенный ЛП.

При введении ЛС перорально интенсивность всасывания лекарства зависит от физиологического состояния и секреторной деятельности ЖКТ, рН среды, осмотического давления, наполнения и времени прохождения пищи по разным отделам пищеварительного тракта и других факторов. Лекарственные вещества легко абсорбируются в тонком эпителиальном слое слизистой оболочки ротовой полости, которая хорошо васкуляризирована. Однако срок их пребывания в полости рта очень ограничен. Кислая среда желудка способствует всасыванию слабых кислот, которые, как правило, растворенные в липидах и находятся в неионизированной форме. Эффективность А.Л. определяется скоростью опорожнения желудка и заметно уменьшается с приемом пищи, особенно жирной (см. Взаимодействие лекарственных веществ и пищи). Некоторые вещества (пенициллины, эритромицин и др.). Разрушаются в кислой среде желудка. Наиболее интенсивно лекарства всасываются в тонком кишечнике. Этому способствует большая поверхность всасывания, длительное нахождение содержания, секреторная активность и различные значения рН. Указанные факторы по-разному влияют на всасывание лекарственных веществ в зависимости от их свойств. Изменяется всасывание слабых щелочей, веществ, которые транспортируются через клеточные мембраны путем облегченной диффузии (витамин В12), медленно растворимых (гризеофульвин) или имеющих электрический заряд, что препятствует их проникновению сквозь мембрану (антибиотики). Некоторые лекарственные вещества инактивируются кишечной флорой (сердечные гликозиды). На скорость всасывания веществ может влиять состояние периферического кровотока. Значительно снижается всасывание лекарственных веществ в толстом кишечнике. Обычно абсорбция веществ в желудке и кишечнике пропорциональна степени их липофильности. Однако степень всасывания не является единственным критерием терапевтической эффективности. Напр. при лечении энтерита и энтероколита тансал вяжущее вещество танальбин ограничивает всасывание фенилсалицилата в кишечнике и тем самым усиливает его антимикробное действие. Эффективность и количество абсорбированного лекарственного вещества может существенно измениться под влиянием метаболических превращений при первом прохождении в печени (лидокаин, нитроглицерин и др.). Или в других внутренних органах. Напр. хлорпромазин лучше метаболизируется в кишечнике, чем в печени. Следует учитывать, что при пероральном приеме. Абсорбция лекарства индивидуальная и может изменяться для каждого ЛП. Особенно это заметно при одновременном приеме ЛП с адсорбентами или с изменением возраста пациента, когда нарушается секреторная деятельность ЖКТ, снижается интенсивность окислительных процессов и уменьшается энергетический резерв в клетках, снижается уровень активного транспорта мономеров-переносчиков (энтероцитов) на клеточной мембране, уменьшается объем желудочного сока и т.п., что сказывается на процессе А.Л. целом.

Возможно также обратное всасывание веществ, которое происходит в секреторных и экскреторных органах (напр. в канальцах почек при мочеобразования) и регулируется нервными и гуморально-гормональными механизмами.Информация про обратное всасывание учитывается при отработке режима приема ЛС и употребление продуктов питания (см. Лечебное питание), которые могут изменять не только концентрацию ЛС в плазме крови, но и выступать как индукторы или ингибиторы ферментов, участвующих в метаболизме. В этой связи не всегда можно избежать уменьшения А.Л., назначая их с определенным интервалом между приемами пищи или использованием парентерального способа введения лекарств.

Необходимо учитывать также влияние на абсорбцию лекарств биофармацевтических факторов: химических и физических свойств веществ, входящих в состав ЛП, включая природу вспомогательных веществ, вида лекарственной формы, технологических приемов и т.д. (см. Вспомогательные вещества, Биологическая фармация), которые влияют не только на всасывание лекарств, но и на их стабильность и системную применимость. Используя для изготовления лекарств субстанции в виде различных солей, кислот, щелочей или эфиров, т.е. веществ, в которых теоретически полностью сохраняется та часть молекулы, которая отвечает за фармакологическое действие) (см. Простая химическая модификация), можно заметно изменить фармакокинетические особенности лекарств, напр. нейролептиков пролонгированного действия. Расхождения во всасывании лекарств в этих случаях объясняются различием субстанции (наличием различных атомов или групп), различной растворимостью в липидах клеточных оболочек или физиологических жидкостях, напр. секретах желудка или кишечника, различным значениям их рКа или различным коэффициентом межфазного распределения, а также рН в месте абсорбции. На А.Л. могут влиять физические характеристики субстанции: размер частиц, форма кристаллов, ее молекулярная структура (аморфный или кристаллическое состояние), природа гидратации или сольватации, фильнисть, электрофизические, оптические и другие особенности. Так, аморфные структуры, как правило, быстрее растворяются сравнению с кристаллическими (не требуется энергия для разрушения кристаллов), по этому признаку их предпочитают (напр. гидрокортизон и преднизолон поставляются на рынок в аморфной форме). Молекулярная структура и другие физические характеристики вещества могут быть причиной терапевтической неэквивалентности ЛС, предопределять степень их нежелательных побочных эффектов.

Хотя состав (рецептура) играет кардинальную роль в абсорбции лекарств , новейшие технологии (с учетом биофармацевтических факторов и эффектов мембранного транспорта) демонстрируют значительный потенциал для лучшего понимания механизмов и путей всасывания. Однако степень и скорость всасывания лекарственных веществ в системный кровоток остаются ключевыми факторами определения их фармакологической эффективности. В последнее время с целью улучшения качественных показателей всасывания много ФП поставляют лекарства с контролируемым высвобождением действующих веществ. Однако в связи с высокой стоимостью применения этих ЛП может быть оправдано только при условии их терапевтической преимущества (см. Терапевтические лекарственные системы) по сравнению с обычными.

    Поверхностные

    Сюда в свою очередь входят подвиды:

    • поверхностные абсорберы (в них поверхность контакта двух фаз - это зеркало жидкости);
    • пленочные абсорберы (в процессе участвует поверхность пленки жидкости);
    • насадочные абсорберы (они имеют специальную насадку, по которой из тел разных форм (кусковой материал, кольца и т. д.) стекает жидкость.);
    • пленочные механические абсорберы.

    В целом, поверхность контакта для такого вида абсорберов определяется геометрическими параметрами поверхности элементов (к примеру, той же насадки), но во многих случаях бывает ей не равна.

    Барботажные

    В барботажных абсорберах поверхность контакта зависит от режима гидродинамики - (расходов жидкости и газа). В этом варианте поверхность контакта разрабатывается потоками газа, который распределяет жидкость в виде струек и пузырьков. Подобное движение газа называется барботажем, отсюда и пошло название самого прибора. Процесс происходит путем заполнения аппарата жидкостью и пропускания через нее газа. Такие опыты могут проводиться и в двух других разновидностях: насадочных абсорберах и барботажных абсорберах колонного типа, которые имеют специальные тарелки различного типа.

    Сюда же входит вариант барботажных абсорберов, в которых жидкости перемешивают механическими мешалками.

    Распыляющие

    В этих абсорберах поверхность контакта так же, как у барботажных абсорберах, зависит от режима гидродинамики, но отличается способом образования: в этом случае жидкость в общей массе газа распыляется на мелкие капельки.

    В свою очередь они тоже делятся на подвиды:

    • Форсуночные (жидкость распыляется с помощью форсунок);
    • Скоростные прямоточные (жидкость распыляется в токе движущегося с большой скоростью газа);
    • Механические (жидкость распыляется с помощью вращающихся механических устройств).

Один и тот же аппарат может оказаться в разных группах, это обычно определяют условия его работы. (К примеру, насадочные абсорберы способны работать как в барботажном, так и в пленочных режимах.)

Диаметр, высоту и прочие параметры абсорбера определяют с помощью расчетов, исходя из степени извлекаемого компонента, производительности и прочих условий задач. Для подобных подсчетов понадобятся сведения по кинетике и статике процесса. Кинетические данные определяются типом и режимом работы аппарата, а статические всегда можно найти в справочных таблицах, затем считают с помощью параметров термодинамики и вычисляют на практике. Если какие-либо данные найти нет возможности, их получают с помощью опытов.

Из всех существующих аппаратов сегодня самое широкое распространение получили барботажные тарельчатые и насадочные абсорберы.

Выбирая подходящий абсорбер, в каждом индивидуальном случае следует исходить из химических и физических факторов проведения процесса, обязательно учитывая и все экономические и технические моменты.

Чтобы лучше понять, как абсорбционные процессы применяются на практике, надо хорошо понимать некоторые способы применения их в химической отрасли промышленности.

Существует несколько таких основных моментов:

  1. Готовый продукт получают с помощью процесса поглощения газа жидкостью.

    В качестве примера можно привести абсорбцию оксида серы (SO3) в ходе производства серной кислоты, абсорбцию окисей азота водой при производстве азотной кислоты, абсорбцию растворов щелочи для получения нитратов и НС1 для получения соляной кислоты. В этих случаях абсорбцию проводят без дальнейшей десорбции.

    Улавливание ценных компонентов из газовой смеси для предотвращения их потерь или с целью их удаления в соответствии с санитарными нормативами.

    Чтобы проиллюстрировать это, лучше всего подходит рекуперация спирта, эфира, кетонов и прочих летучих растворителей.

    Для выделения отдельных ценных компонентов разделяют газовые смеси

    В данном случае у поглотителя должна быть большая поглотительная способность в сравнении с извлекаемым компонентом и несколько меньшей для других частей смеси газов (это еще называют селективной или избирательной абсорбцией.) При этом абсорбцию дополнительно сочетают с десорбцией так, чтобы они в своем чередовании образовывали круговой процесс.

    Ярким примером может послужить абсорбция ацетилена из крекинговых либо газов пиролиза или бензола из газа кокса, природного газа, абсорбция бутадиена из газа от разложения этилового спирта и т.п.

  2. Необходимость очистки газа от вредных компонентов с целью избавления их от примесей.

В рассматриваемом варианте извлеченный компонент еще и используют, поэтому его выделяют с помощью процесса десорбции и отправляют на дальнейшую переработку. Когда количество извлекаемой составной части очень мало и поглотитель не несет особой ценности, после абсорбции раствор сливают в канализацию.

В качестве примеров можно привести очистку газов нефти и кокса от Н2S, обсушивание сернистого газа при получении серной кислоты, очищение смеси азота и водорода, чтобы синтезировать аммиак. Часто используется очистка по санитарным нормам топочных отходящих газов от SO2, очистка от абгаза (это выделяющаяся парогазовая смесь) после процесса конденсации хлора в жидком виде, от фтористых газов, которые выходят, когда получают минеральные удобрения и многие другие.

Из описаний способов применений в химической отрасли промышленности можно сделать логический вывод, что абсорбцию часто сочетают с десорбцией. Такое сочетание позволяет использовать поглотитель много раз и в чистом виде выделять абсорбированный компонент. Чтобы его получить, раствор после пребывания в абсорбере тут же направляют на процесс десорбции, где и выделяется нужный компонент, а освобожденный от него (регенерированный) раствор опять возвращают для новой абсорбции. При этой схеме кругового процесса поглотитель практически не растрачивается (не считая совершенно незначительных его потерь) и постоянно проходит циркуляцию типа абсорбер — прибор десорбции — абсорбер.

В случае наличия малоценного поглотителя многократное использование поглотителя не проводят при процессе десорбции, после освобожденный в приборе десорбции поглотитель выбрасывают в канализацию, а в абсорбер кладут новый.

Условия, которые очень благоприятны для процесса десорбции, абсолютно противоположны условиям, которые благотворят абсорбции. Чтобы осуществить над раствором десорбцию, необходимо обеспечить довольно сильное давление компонента, чтобы он смог выделиться в процессе газовой фазы. При проведении же абсорбции, особенно когда она дает необратимую химическую реакцию, нужные компоненты не поддаются освобождению от поглотителя путем десорбции. Регенерацию подобных поглотителей возможно производить только еще одним химическим методом.

На сегодняшний день для всех видов приборов пока не существует достаточно надежного способа, который мог бы позволить определять коэффициент массопередачи с помощью расчета или опираясь на лабораторные опыты либо модельные варианты. Тем не менее, для некоторых видов аппаратов постепенно удается их найти даже с помощью довольно простых опытов и достоверной точностью вычислений.

Знание фармакокинетики позволяют предположить возникновение побочных эффектов после введения препаратов, а также помогают определить их оптимальную дозировку при определенном пути введения.

Абсорбция лекарств

Для того чтобы любой лекарственный препарат вызвал фармакологическое действие, нужно, чтобы он впитался в кровь. Известны такие механизмы абсорбции:

пассивная диффузия. Большинство лекарственных веществ проникает через биологические мембраны в направлении градиента концентрации (из зоны концентрированного разведения) до тех пор, пока с обеих сторон мембраны концентрация не станет одинаковой;

Существует облегченная диффузия с помощью носителей без потери энергии по градиенту концентрации (например, глюкоза, глицерин)

фильтрация лекарств осуществляется через поры в мембране. Через них проникают соединения, имеющие низкую молекулярную массу: вода, мочевина и тому подобное;

активный транспорт осуществляется с помощью специфических транспортных систем клеток и происходит при условии затрат энергии; так всасываются сердечные гликозиды, глюкокортикоиды,

пиноцитоз - поглощение лекарственного препарата с образованием везикул. Этот механизм особенно важен для лекарств полипеп-тиднои структуры. Для эффективной и безопасной лекарственной терапии следует знать факторы, влияющие на абсорбцию.

Абсорбция лекарственного средства зависит от следующих факторов:

Растворимость (растворимые в липидах препараты лучше проникают через клеточные мембраны, чем водорастворимые)

Особенности лекарственных форм:

а) таблетки, имеют энтеросолюбильным покрытие "устойчивы к желудочного сока, но их нельзя запивать горячими напитками, поскольку это приведет к преждевременному растворения препарата

б) лекарственные формы, в которых процесс абсорбции происходит с разной интенсивностью, обеспечивающей длительный терапевтический эффект (таблетки, испещренные гранулами; спансулы - капсулы, содержащие микродраже; силиконовые резиновые капсулы). Измельчать такие лекарственные формы перед употреблением нельзя, поскольку они будут быстро всасываться.

Особенности места абсорбции:

Кровообращение к месту абсорбции (повышает абсорбцию применения тепла, а замедляет - применение холода, при введении препарата внутримышечно движение, массаж после инъекции ускоряют абсорбцию)

Кислотно-основное состояние среды определяет скорость абсорбции (лучше всасываются нейонизовани - растворимые в липидах, кислотные препараты - в желудке, а йонизовани - растворимые в воде, кислотные препараты - в кишечнике, препараты с положительным или отрицательным зарядом - медленно).

Учитывая, что действие лекарств возникает только после их поступления в кровоток, был предложен термин "биологическая доступность" - количество лекарственного вещества в видсоткак (%), которая достигла плазмы крови, относительно исходной дозы препарата. При энтеральном пути введения биодоступность определяется потерями вещества во время ее всасывания в пищеварительном тракте и первого прохождения через печеночный барьер.

Биодоступность лекарственного вещества при внутривенном введении достигает 100%. На биодоступность влияют: форма препарата (жидкая или твердая, наличие наполнителей, оболочек), химический состав, физиология организма (метаболизм печени, заболевания желудочно-кишечного тракта, печени и почек).

Фармацевтические фирмы контролируют формы и химический состав препарата. Препараты разных фирм могут иметь различную абсорбцию. Вот почему пациенту следует принимать лекарства одного производителя или иметь информацию о биодоступность других фармацевтических фирм.

Абсорбция

На абсорбцию лекарственного вещества могут влиять химические и физиологические факторы (табл. 4.1).

Таблица 4.1 Существенные химико-физиологические факторы, влияющие на абсорбцию лекарств через клеточные мембраны, включая мембраны ЖКТ

Диффузия лекарств через липиды мембран обычно определяет параметры абсорбции препаратов

Большинство лекарств представляют собой небольшие органические молекулы с молекулярной массой менее 1000, диффундирующие через биологические мембраны в незаряженном виде. Это происходит вследствие того, что основным структурным компонентом клеточных мембран служит липидный бислой и незаряженные вещества более растворимы в липидах, чем заряженные. Однако некоторые заряженные молекулы активно транспортируются через мембранный барьер (например, 5-фторурацил и леводопа) специальными молекулами-транспортерами.

Поскольку большинство молекул с малой молекулярной массой представляют собой либо слабые кислоты, либо основания, либо амфотерны по природе, pH среды, в которой растворяется лекарство, будет определять доступную фракцию в не-ионизированной форме, которая может диффундировать через клеточную мембрану. Величина этой фракции зависит от химической природы лекарства, рКа и местного pH. рКа лекарства - это pH, при котором 50% молекул вещества в растворе ионизированы; этот показатель описывает уравнение Хендерсона-Хассельбаха. Для кислых (НА) лекарств НА ^ Н+ + А", где НА - незаряженная форма, Н+ - протон, А" - анионная форма. Из этого соотношения может быть выведено уравнение: рКа = pH + log (НА/А“). Это равенство позволяет рассчитать соотношение концентраций НА/А" при любом значении pH.

По аналогии для основных (В) молекул ВН+ В + Н+ и рКа = pH + bg (ВН+/В).

Описание к Рис. 4.3 : Влияние рКа на степень ионизации функциональной группы кислых и основных лекарств относительно физиологического pH. Повышение интенсивности окраски стрелок соответствует увеличению степени ионизации относительно физиологического pH 7,4. Для кислых лекарств: чем более основным является раствор (повышение pH), тем больше фракция ионизированного вещества. Для основных лекарств: чем более кислым является раствор (снижение pH), тем больше ионизированная часть вещества. Степень ионизации рассчитывают, используя уравнение Хендерсона-Хассельбаха (см. текст) с учетом рКа и pH.

Значение рКа и связанная с ним величина фракций ионизированных или неионизированных молекул для различных лекарств при физиологическом pH 7,4, а также при других величинах pH, показывают, как изменяется ионизированная фракция вместе с pH у кислых и основных лекарств (рис. 4.3). Важный вывод из данных рис. 4.3 состоит в том, что лекарство будет существовать в его ионизированной форме, когда подвергается действию pH, противоположному его рКа. Следовательно, ионизация кислых лекарств увеличивается с повышением pH (повышение основности среды), тогда как ионизация основных лекарств возрастает вместе со снижением pH (повышение кислотности среды).

Путь введения лекарства может повлиять на скорость его абсорбции

Фракция растворенного лекарства в его неионизированной форме и, следовательно, скорость, но не обязательно величина абсорбции, могут зависеть от pH в месте введения. Например, в желудке, где pH составляет приблизительно 2,0, большинство растворенных кислых лекарств будут неионизированы и, следовательно, способны быстро диффундировать через слизистую оболочку желудка в кровоток. Наоборот, многие основные лекарства будут полностью ионизированы и диффундируют очень медленно.

Диффузия лекарства в неионизированной форме через липидный бислой мембран зависит от молекулярной массы его молекул и растворимости в липидах

Коэффициент диффузии неионизированной молекулы в липидах обратно пропорционален корню квадратному из ее молекулярной массы. Это отношение показывает, что, если не учитывать другие влияния, более мелкие молекулы легче проходят через мембраны, чем более крупные. Однако, поскольку большинство лекарств имеют низкую молекулярную массу, ее величина редко оказывается лимитирующим абсорбцию фактором.

На диффузию через мембраны влияет также растворимость в липидах, которую определяют как коэффициент распределения. Он отражает растворимость вещества в липидах по отношению к его растворимости в воде или в физиологическом буферном растворе. Более высокой растворимости в липидах соответствует более высокая величина коэффициента распределения. Этот коэффициент определяют при меньшей, чем насыщающая, концентрации лекарств в обеих фазах. Чем выше коэффициент распределения, тем быстрее вещество диффундирует через липидную мембрану. Терапевтическое применение различных барбитуратов (средств, угнетающих ЦНС) отражает значение коэффициента распределения. Таким образом:

  • тиопентал, имеющий рКа 7,45 и высокий коэффициент распределения (580), используют как кратковременно действующий после инъекции анестетик, поскольку он быстро проникает в ткань мозга и быстро вызывает общую анестезию;
  • фенобарбитал со сходной величиной рКа (7,20) и низким коэффициентом распределения (3) применяют для постоянного лечения эпилепсии, но не для наркоза.

Путь введения может ограничить доступ лекарства в системный кровоток

Как было указано ранее, поступление лекарственного вещества в кровоток зависит от пути введения. Например:

  • лекарство в форме глазных капель действует в основном местно, хотя могут возникать и системные эффекты, вызванные веществом, абсорбированным через слезные протоки;
  • пенициллин G нестабилен в кислой среде желудка, и при пероральном приеме необходимы большие дозы, чтобы компенсировать разрушение антибиотика в желудке;
  • нитроглицерин принимают сублингвально, чтобы обеспечить быструю системную абсорбцию и избежать предсистемной элиминации в печени при пероральном приеме.

Скорость абсорбции лекарства при может зависеть от скорости опорожнения желудка

Скорость абсорбции из ЖКТ может быть замедлена вследствие задержки кислого лекарства в желудке или повышена в результате быстрого перехода основного лекарства в тонкую кишку. Так, стакан воды, выпитой вместе с приемом лекарства на пустой желудок, ускоряет опорожнение желудка и переход лекарства в верхний отдел кишечника с более высоким pH и значительно большей площадью абсорбирующей поверхности. Опорожнение желудка можно ускорить фармакологически. Метоклопрамид повышает сократительную активность желудка и ускоряет его опорожнение. Наоборот, жирная пища, кислые напитки или лекарства с антихолинергическим действием замедляют опорожнение желудка.

Абсорбция лекарств из желудочно-кишечного тракта

  • Многие лекарства хорошо абсорбируются из ЖКТ
  • Абсорбция в ЖКТ зависит от доли неионизированной фракции растворенного лекарства
  • Опорожнение желудка можно ускорить приемом лекарства вместе с холодной водой
  • Основные лекарства, принятые внутрь, абсорбируются плохо, пока не достигнут двенадцатиперстной кишки
  • Лекарственные формы с модифицированным высвобождением замедляют абсорбцию и увеличивают продолжительность лекарственного эффекта

Лекарственное средство может попасть в систем­ный кровоток несколькими путями: при назначе­нии внутрь, сублингвально, ректально, через лег­кие, чрескожно, подкожно, внутримышечно и внутривенно. Абсорбция - это процесс, в ходе ко­торого лекарственный препарат из места введения поступает в системный кровоток. На абсорбцию влияют физические свойства препарата (раствори­мость, рК а и концентрация) и характеристики мес­та абсорбции (перфузия, рН и площадь поверх­ности). Следует отличать абсорбцию от биодоступности, которая представляет собой фракцию неизмененного вещества в плазме крови относительно исходной дозы препарата. Напри­мер, нитроглицерин хорошо абсорбируется через ЖКТ, но при приеме внутрь имеет низкую биодос­тупность, потому что подвергается интенсивному метаболизму в печени (так называемый эффект первого прохождения).

Назначение препарата внутрь удобно, эконо­мично и позволяет достаточно точно его дозиро­вать. Тем не менее на поступление препарата в сис­темный кровоток влияют возможность контакта с больным, эффект первого прохождения, рН же­лудка, секреторная и моторная функции ЖКТ, пища, другие лекарственные средства.

Абсорбируется преимущественно неионизиро­ванная фракция препарата. Следовательно, препа­раты-кислоты лучше всасываются в кислой среде (Кис - + H + → КисН), препараты-основания - в щелочной (ЩН + → H + + Щ).

Кровь из сосудов полости рта дренируется не­посредственно в верхнюю полую вену, в связи с этим при сублингвальном и буккальном путях введе­ния препараты поступают в системный кровоток, минуя печень. Ректальный путь - альтернатива приему внутрь при невозможности контакта с па­циентом (к примеру, у детей) или при физической невозможности такого приема. Венозная кровь из прямой кишки поступает в нижнюю полую вену, минуя печень, в связи с этим при ректальном пути вве­дения биодоступность выше, чем при приеме внутрь. При ректальном введении нельзя быть уверенным в точности дозировки; кроме того, мно­гие препараты раздражают слизистую оболочку прямой кишки. Абсорбция ингаляционных анесте­тиков обсуждается в гл. 7.

К преимуществам чрескожного введения отно­сятся длительная непрерывная абсорбция, возможность использования незначительных доз препара­та. Роговой слой служит эффективной преградой для большинства соединœений, за исключением низкомоле­кулярных жирорастворимых препаратов (напри­мер, клонидин, нитроглицерин, скополамин).

Наконец, препараты вводят парентерально, т. е. подкожно (п/к), внутримышечно (в/м) и внутривенно (в/в). Абсорбция препарата при под­кожном и внутримышечном введении определяет­ся диффузией из места инъекции в кровь. Ско­рость диффузии зависит от местного кровотока и среды-переносчика (растворы абсорбируются бы­стрее, чем суспензии). Некоторые препараты мо­гут вызывать боль при введении и некроз тканей. При внутривенной инъекции препарат полностью поступает в системный кровоток.


  • - АБСОРБЦИЯ

    Некоторые лекарственные вещества абсорбируются в желудке, другие только в тонком кишечнике. Задержки опорожнения желудка могут замедлять действие всасывающихся в тонком кишечнике лекарств, если они даются перед едой, когда привратник закрыт. Некоторые лекарства,...


  • - Канальцевая реабсорбция.

    Первичная моча, которая является результатом клубочковой фильтрации плазмы крови, имеет характеристики, анлогичные плазме крови: такую же осмоляльность (300 мосм/кг) или плотность (1010 г/л), рН (7,4), но отличается низким содержанием белка. Объем первичной мочи составляет около...


  • - Канальцевая реабсорбция.

    Канальцевая реабсорбция - это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты,...


  • - Малабсорбция

    Слабость тонкого кишечника приводит к так называемому «синдрому плохого всасывания пищи», или малабсорбции. Его отождествляют с «синдромом спру»10 - хроническим расстройством пищеварения, которое нередко возникает в тропической зоне, когда организм оказывается...


  • - Реабсорбция бикарбонатов и секреция протонов. Подкисление мочи.

    Одной из основных гомеостатических функций почек является поддержание концентрации ионов водорода (протонов Н+). Все жидкости и ткани организма характеризуются определенным рН, что важно для процессов растворения, комплексообразования, нервно-мышечной проводимости,...


  • - Канальцевая реабсорбция

    Гломерулярный фильтрат с растворенными в нем ксенобиотиками переходит из боуменовой капсулы по извитым канальцам, петле Генле, дистальному отделу канальцев в собирательные трубки. Длина каждого из 2 млн канальцев равна 3 - 5 см. Общая площадь поверхности канальцев равна...


  • - Всасывание (абсорбция)

    При большинстве путей введения лекарственные вещества, преж­де чем они попадут в кровь, проходят процесс всасывания. Различают энтеральные (через пищеварительный тракт) и па­рентеральные (помимо пищеварительного тракта) пути введения лекарственных веществ. ...

  • 

    Copyright © 2024 Образовательный портал.