Пороговое значение виброскорости. Измерение параметров вибрации. Критерии оценки вибрационного состояния машин

До сих пор мы рассматривали вибросмещение как меру амплитуды вибрации. Вибросмещение равно расстоянию от точки отсчета, или от положения равновесия. Помимо колебаний по координате (смещение), вибрирующий объект испытывает также колебания скорости и ускорения. Скорость представляет собой быстроту изменения координаты и обычно измеряется в м/с. Ускорение есть скорость изменения скорости и обычно измеряется в м/с 2 или в единицах g (ускорение свободного падения).

Как мы уже видели, графиком смещения тела, испытывающего гармонические колебания, является синусоида. Мы показали также, что и виброскорость в этом случае подчиняется синусоидальному закону. Когда смещение максимально, скорость равна нулю, так как в этом положении происходит изменение направления движения тела. Отсюда следует, что временная реализация скорости будет сдвинута по фазе на 90 градусов влево относительно временной реализации смещения. Другими словами, скорость опережают по фазе смещение на 90 градусов.

Вспомнив, что ускорение - это скорость изменения скорости, легко, по аналогии с предыдущим, понять, что ускорение объекта, испытывающего гармонического колебания, также синусоидально и равно нулю, когда скорость максимальна. И наоборот, когда скорость равна нулю, ускорение максимально (скорость изменяется наиболее быстро в этот момент). Таким образом, ускорение опережает по фазе скорость на 90 градусов. Эти соотношения приведены на рисунке.



Существует еще один вибрационный параметр, а именно, быстрота изменения ускорения, называемая резкостью (jerk) .

Резкость - это то внезапное прекращение замедления в момент остановки, которое вы ощущаете, когда тормозите на автомобиле, не отпуская педаль тормоза. В измерении этой величины заинтересованы, например, производители лифтов, потому что пассажиры лифтов чувствительны именно к изменению ускорения.

Краткая справка по единицам измерения амплитуды

В англоязычных странах вибросмещение обычно измеряют в миллидюймах (1/1000 дюйма; 1 дюйм = 2,54 см), и по традиции применяют значение "peak-to-peak" (размах). В европейских странах принята международная система единиц и вибросмещение измеряют в микрометрах (мкм).

Виброскорость обычно измеряют в м/с или в мм/с, в англоязычных странах - дюйм/с (ips). При измерении виброскорости используются как СКЗ, так и пиковое значения. В некоторых странах, например, в США, в силу давней традиции, пиковое значение является более употребительным.

Виброускорение обычно измеряют в единицах g СКЗ (g - ускорение свободного падения). В действительности g не является системной единицей - это просто то ускорение, которое мы испытываем, находясь на Земле. Стандартными единицами измерения ускорения являются м/с 2 , а в англоязычных странах - дюйм/c 2 . 1g=9.81м/с 2 .

Процесс преобразования смещения в скорость или скорости в ускорение эквивалентен математической операции дифференцирования . Обратное преобразование ускорения в скорость и скорости в смещение называется интегрированием . Сегодня можно проводить эти операции внутри самих измерительных приборов и легко переходить от параметров измерения к другим.

Как отмечалось выше, вибрационный сигнал смещения на определенной частоте может быть преобразован в скорость посредством дифференцирования . Дифференцирование сопровождается умножением амплитуды на частоту, поэтому амплитуда виброскорости на определенной частоте пропорциональна смещению, умноженному на эту частоту. При фиксированном смещении, скорость будет удваиваться с удвоением частоты, а если частота увеличится в десять раз, то и скорость умножится на десять.

Чтобы получить из скорости ускорение, необходимо еще одно дифференцирование, а, значит, и еще одно умножение на частоту. Поэтому, ускорение при фиксированном смещении будет пропорционально квадрату частоты.

Проиллюстрируем это на следующем примере: вы без труда можете махать рукой, отводя ее вперед и назад на 30 см, делая один цикл в одну секунду, т.е. с частотой 1 Гц. Вероятно, вы сможете осуществлять движения с такой амплитудой в 5 или 6 раз быстрее, то есть с частотой 5-6 Гц. Однако представьте себе, насколько быстро должна двигаться ваша рука, чтобы проходить туда и обратно то же самое расстояние с частотой 100 Гц или 1000 Гц.

А теперь представьте себе, какую силу вам придется приложить для этого. По второму закону Ньютона, сила равна массе, умноженной на ускорение . Поэтому при заданном смещении сила также пропорциональна квадрату частоты. Именно по этой причине мы никогда не сталкиваемся с процессами, где большие ускорения сопровождаются большими смещениями. На практике просто не существует таких огромных сил, которые требуются для этого, а если бы они нашлись, то были бы крайне разрушительны.

Исходя из этих простых рассуждений, легко понять, что одни и те же вибрационные данные, представленные в виде графиков смещения, скорости или ускорения будут выглядеть по-разному. На графике смещения будет усилена низкочастотная область, а на графике ускорения - высокочастотная при ослаблении низкочастотной.

Величины смещения, скорости и ускорения в стандартных международных единицах связаны следующими уравнениями:

На приведенном рисунке 7 один и тот же вибрационный сигнал представлен в виде виброперемещения, виброскорости и виброускорения.

Обратите внимание, что график смещения очень трудно анализировать на высоких частотах, зато высокие частоты хорошо видны на графике ускорения. Кривая скорости наиболее равномерно по частоте среди этих трех. Это типично для большинства роторных машин, однако в некоторых ситуациях самыми равномерными являются кривые смещения или ускорения. Лучше всего выбирать такие единицы измерения, для которых частотная кривая выглядит наиболее плоской: тем самым обеспечивается максимум визуальной информации для наблюдателя. Для диагностики машин наиболее часто применяет виброскорость.

Сложная вибрация

Вибрация есть движение, вызванное колебательной силой. У линейной механической системы частота вибрации совпадает с частотой возбуждающей силы. Если в системе одновременно действуют несколько возбуждающих сил с разными частотами, то результирующая вибрация будет суммой вибраций на каждой частоте. При этих условиях результирующая временная реализация колебания уже не будет синусоидальной и может оказаться очень сложной.

На рис. 8 высоко- и низкочастотная вибрации накладываются друг на друга и образуют сложную временную реализацию. В простых случаях, подобных этому, достаточно легко определить частоты и амплитуды отдельных компонент, анализируя форму временного графика (временную реализацию) сигнала, однако большинство вибрационных сигналов значительно сложнее, и их гораздо труднее интерпретировать. Для типичной роторной машины часто весьма сложно извлечь необходимую информацию о ее внутреннем состоянии и работе, изучая лишь временные реализации вибрации, хотя в некоторых случаях анализ последних является достаточно мощным инструментом.

Рис. 9 Пример сложной вибрации.

  1. Виброперемещение, S – это расстояние между крайними точками перемещения колеблющегося элемента вдоль оси измерения. Виброперемещение измеряется в линейных единицах: в микронах – мкм; в миллиметрах – мм, при больших значениях виброперемещения, например, грохотов (1 мм = 1000 мкм). Параметром, дополняющим виброперемещение является частота вращения. Например, допустимое значение виброперемещения 20 мкм при частоте вращения 1500 об/мин и 10 мкм при частоте вращения 3000 об/мин.
    Виброперемещение измеряется при возникновении низкочастотной вибрации, верхняя граница частотного спектра не более 200 Гц. Эти измерения актуальны в строительной виброакустике, при проведении балансировки роторов, при исследовании машин с малыми зазорами между узлами и деталями, при исследовании упругих деформаций и прогнозе усталостных разрушений.
  2. Виброскорость, v – производная виброперемещения по времени. Этот параметр характеризует мощность колебательного (вибрационного) процесса, направленного на разрушение деталей и характеризует энергетическое воздействие на узлы объекта контроля (энергия колебания E = m × V 2 / 2 ). Виброскорость – это скорость перемещения контролируемой точки оборудования. Виброскорость одновременно учитывает перемещение контролируемой точки и частоту колебаний, вызвавших вибрацию. Виброскорость измеряется в миллиметрах на секунду, мм/с.
    Виброскорость измеряют в частотном диапазоне 10…1000 Гц. По уровню виброскорости определяют техническое состояние машин, их узлов и деталей.
  3. Виброускорение, а – производная виброскорости по времени. Параметр характеризует силу инерции, которая воздействует на объект при вибрации:
    F = m × a, где F – сила инерции; m – масса объекта; а – виброускорение.
    Виброускорение – это ускорение перемещения контролируемой точки оборудования или это скорость изменения скорости. Виброускорение характеризует силовое динамическое взаимодействие элементов агрегата. Виброускорение измеряется в метрах на секунду в квадрате, м/с 2 , иногда используется единица ускорения свободного падания – g, 1 g = 9,8 м/с 2 .
    Виброускорение измеряется при наличии вибрации в широкой полосе частот, от 50 до 10000 Гц и более. Эти измерения актуальны при виброакустической диагностике для оценки силы ударов и раннего обнаружения повреждений в подшипниках качения и зубчатых передачах.
    Примечание : существует редко используемый параметр вибрации – резкость – третья производная перемещения по времени, размерность – км/с 3 .
  4. Частота, f – характеристика периодического процесса, равная количеству повторений в единицу времени, обратно пропорциональна периоду колебаний:
    f = 1/T , где Т – период, время полного цикла колебаний (с).
    Единицей измерения частоты в Международной системе единиц (СИ) является герц (русское обозначение – Гц; международное – Hz), названный в честь немецкого физика Генриха Герца. Одно колебание в секунду соответствует 1 Гц.
    При частоте вращения 3000 об/мин, частота колебаний составляет:
    f = n / 60 = 3000 / 60 = 50 Гц.
    Частота колебаний позволяет идентифицировать источник колебаний.
    Гармонические колебания в разных точках машины, совпадающие по частоте, называются синхронными. Синхронные колебания отличаются друг от друга амплитудой и фазой.
  5. Фаза колебаний, φ – определяет положение характерной точки колебаний (максимального, минимального значения или перехода от отрицательного к положительному значению) относительно зафиксированного положения метки. Измеряется в градусах. Используется при балансировке, обследовании металлоконструкций, диагностировании механизмов.
    Колебания в двух точках, совпадающие по фазе, называют синфазными , а отличающиеся на 180 0 – противофазными . Сдвиг фаз синхронных гармонических колебаний – это разность фаз двух синхронных гармонических колебаний гармонических колебаний в заданный момент времени. Этот параметр часто используют при анализе вибрации.

Для гармонического колебательного процесса существует ряд особенностей, которые характеризуют связь между перемещением, скоростью и ускорением:

Пример

Для роторного механизма, имеющего частоту вращения 3000 об/мин (50 Гц) зафиксировано значение виброперемещения – 20 мкм. Определить соответствующие значения виброскорости и виброускорения.

v = 2 π × f × S = 6,28 × 50 × 20 = 6,28 мм/с;
а = 2π × f × v = 6,28 × 50 × 6,28 = 1,97 м/с 2 .

Исходя из данных соотношений, можно сделать вывод о том, что зависимости между перемещением, скоростью, ускорением и частотой будут различными. На графике перемещения будет преобладать низкочастотная область, а на графике ускорения ‑ высокочастотная при ослаблении низкочастотной ().

Виброускорение

Виброскорость

Виброперемещение

Числовые значения уровней ускорения, скорости и перемещения в логарифмических координатах (при пороговых значениях по ISO 1683) равны только в одной точке – при частоте 159 Гц (). На эту частоту настраиваются калибраторы вибрации. В этой точке значение виброперемещения составляют 10 мкм, значения виброскорости – 10 мм/с, а значения виброускорения – 10 м/с 2 .

Основные характеристики колебательных процессов

  1. Пиковое значение – определяется как наибольшее отклонение колеблющейся величины от среднего положения х ПИК = Iх МАХ I .
    Используется как составляющая при измерении виброускорения. Пиковое значение эффективно при оценке кратковременных механических ударов и так далее. Однако пиковое значение отображает только максимальное значение исследуемых колебаний, а не их временное развитие.
  2. – среднее значение измеренных данных, характеризует общую интенсивность вибрации:
    где τ – текущее значение временной координаты, Т – период измерения.
    Среднее значение отображает временное развитие исследуемых колебаний, но его практическое применение ограничено ввиду того, что оно не имеет непосредственной связи ни с какой физической величиной этих колебаний.
  3. Среднее квадратичное значение (СКЗ) – квадратный корень из среднего арифметического или среднего интегрального значения квадрата колеблющейся величины в рассматриваемом периоде времени:
    Для получения правильного значения, интервал усреднения должен быть не меньше одного периода колебания. Используется при измерении виброскорости. Пересчёт значений виброускорения, виброскорости и виброперемещения, определённых в результате анализа спектра, как функции угловой частоты ω , в среднее квадратическое значение виброскорости проводится по следующим формулам:

    Возможно определение среднего квадратического значения виброскорости по максимальному и минимальному значению виброскорости в спектре:
    Среднеквадратическое значение учитывает временное развитие исследуемых колебаний и непосредственно отображает значение, связанное с энергией сигнала и, следовательно, разрушающей способностью этих колебаний.
  4. Коэффициент амплитуды или пик-фактор – отношение пикового (x ПИК ) к среднеквадратичному (x СКЗ ) значению: K ПФ = x ПИК / x СКЗ .
    Пик-фактор характеризует развитие повреждения. Значения пик-фактора в начальном периоде работы механизма составляют 3…4. При зарождении повреждений значения пик-фактора увеличиваются до 10…15. Увеличение степени повреждений снижает значения пик-фактора до 3…4 ().
    Для гармонических колебаний: K ПФ = 1,41; x ПИК = А ; x СРЕД = 0,637А ; x СКЗ = 0,707А .

  1. Эксцесс – отношение момента четвёртого порядка к квадрату момента второго порядка. Эксцесс определяет степень отклонения параметра от нормального распределения: b = m 4 / (m 2 ) 2 , где m 4 – момент четвёртого порядка; m 2 – момент второго порядка.
    При определении статистических моментов используются значения:
    – среднее арифметическое – сумма относительных отклонений;
    – дисперсия – сумма квадратов относительных отклонений;
    – асимметрия – сумма кубов относительных отклонений;
    – островершинность – сумма четвёртой степени относительных отклонений.
    Значения эксцесса используется для определения развития различных неисправностей элементов машин, так как отклонение от нормального распределения является однозначным признаком появления неисправности.

Относительные единицы вибрации – 20-ти кратные десятичные логарифмы отношения измеренного значения параметра вибрации (v ИЗМ ) к некоторому начальному уровню (v НАЧ ) и измеряются в децибелах (дБ). Для виброскорости:

L v = 20 lg (v ИЗМ / v НАЧ ) .

Для виброускорения:

L а = 20 lg (а ИЗМ / а НАЧ) .

Увеличение уровня на 6 дБ соответствует удвоению амплитуды, независимо от исходного значения. Изменение уровня на 20 дБ означает рост амплитуды в десять раз. Для временных реализаций вибрации всегда используются линейные единицы измерения амплитуды: мгновенное значение сигнала может быть и отрицательным, и поэтому его невозможно логарифмировать.

При использовании логарифмических характеристик необходимо указывать стандартный пороговый уровень, принятый при обработке значений вибрации. По Правилам Российского Морского Регистра Судоходства и ГОСТ 12.1.034-81, пороговый уровень принят: v НАЧ = 5·10 -5 мм/с; а НАЧ = 3·10 -4 м/с 2 . По ГОСТ 30296-95: v НАЧ = 5·10 -8 м/с; а НАЧ = 1·10 -6 м/с 2 . По ISO 1683: v НАЧ = 1·10 -6 мм/с; а НАЧ = 1·10 -6 м/с 2 ; S НАЧ = 1·10 -6 мкм.

Обычно, аналоговый вибрационный временной сигнал преобразуется в цифровой вид и используется для спектрального анализа в частотной области. Сложность формы временного сигнала, его интерпретация сильно затруднена, поэтому часто временная форма сигнала игнорируется. В то же время информацию, которую может дать временная форма, недоступна при рассмотрении спектра вибрации.

Например, случайный процесс (непрерывный шум) и переходный процесс, связанный с какими-то нерегулярными событиями, имеют схожие спектры, которые, тем не менее, соответствуют сигналам совершенной разной природы, что отчетливо видно по их временным реализациям. Во временной области легко различим стук деталей, приводящий к асимметрии формы сигнала, который может быть следствием ослабления механических соединений.

Обследование вибрационного состояния редуктора РМ-400 механизма передвижения мостового крана проведено при работе оборудования в режиме холостого хода при частоте вращения двигателя 720 об/мин. При работе редуктора наблюдаются глухие стуки. Значения общего уровня виброскорости – 3,0 мм/с, виброускорения – 1,8 м/с 2 . В спектрограмме виброскорости подшипника тихоходного вала редуктора ( а) зубцовая частота второй передачи представлена составляющей на частоте 31,5 Гц, с амплитудой 0,2 мм/с. Запись временного сигнала виброускорения ( б) позволила установить возможную причину неисправности – повреждения (забоина) на зубчатом колесе тихоходного вала проявившуюся, как удары с частотой вращения тихоходного вала. Подтверждение диагноза получено при визуальном осмотре и устранено после механической обработки повреждённого зуба.

(а)

(б)

Цикл измерений содержал 12 измерений, с учётом 800 линий в спектре – 9600 значений, дополнительно проведены измерения временной формы вибрационного сигнала ‑ 4×16000 значений. Из этих данных получено два информационных сообщения: об общем уровне вибрации (соответствующего удовлетворительному состоянию) и о возможной причине неисправности, устранённой при ремонте.

Работа электродвигателей часто сопровождается биениями, которые, хорошо воспринимаются на слух. Эти биения соответствуют частоте скольжения ротора или разности частоты вращения ротора и частоты возбуждения двигателя. Частота биений очень низка, иногда ниже 0,1 Гц. Биения могут также возникать, когда машины, близко расположенные друг к другу, работают на слегка различающихся частотах вращения. Наблюдать биения лучше во временной области вибрационного сигнала, поскольку для вычисления спектральных составляющих на столь низких частотах требуется очень большое время и высокое разрешение.

Трудность анализа заключается в отсутствии правил формализации и обработки временных реализаций параметров быстропротекающих процессов. Во многом данный процесс субъективен и зависит от опыта специалиста. Спектральные составляющие вибрационного сигнала часто остаются практически без изменений из-за усреднения вибрационного сигнала, необходимого для получения достоверной оценки. Анализ фактического сигнала несет дополнительную информацию о техническом состоянии механизма. Наиболее эффективно использование анализа временной формы вибрационного сигнала для диагностирования переходных, нестационарных, ударных процессов. Для этого используются периоды 30…400 мкс, количество измерений 10000…16000 и более, режим – без усреднений.

Правила анализа временного сигнала

  1. Необходимо оценить повторяемость параметров колебательного процесса. Одинаковым воздействиям должны соответствовать одинаковые реализации параметров колебаний. Можно использовать сравнительный анализ однотипных процессов в различных точках при использовании двухканального анализатора вибрации.
  2. Оценка симметричности сигнала относительно нулевого (начального) уровня колебаний. Наличие симметричного сигнала свидетельствует о хорошем состоянии (идеальным случаем является синусоидальная форма колебаний – абсолютно симметричная), отклонения – увеличивают степень асимметрии. Диагностические параметры для анализа – положительные и отрицательные значения амплитуд колебаний. Причины асимметрии – нелинейность характеристик системы, анизотропия деталей подшипникового узла.
  3. Наиболее значимым является время успокоения системы после возмущающего воздействия. Системы с малой жесткостью и малыми демпфирующими свойствами будут иметь большее время затухания. Следует определить причины снижающие жесткость и демпфирующие свойства системы. Оценить стабильность демпфирующих свойств механической системы возможно при определении декремента колебаний как натурального логарифма отношения двух последующих амплитуд:

Характер вибрации при изменении частоты вращения механизма также является диагностическим признаком, требующим анализа временных реализаций:

  1. Если при изменении частоты вращения происходит увеличение вибрации в линейной зависимости, причиной повреждений являются механические повреждения деталей.
  2. Если при изменении частоты вращения происходит увеличение вибрации в квадратичной зависимости, причиной повреждений является дисбаланс ротора.
  3. Если при изменении частоты вращения происходит увеличение вибрации в экспоненциальной зависимости, причиной повреждений является трещина в корпусной детали или в основании.
  4. Резкое уменьшение вибрации электродвигателя при отключении питания – признак наличия повреждений, вызванных повреждениями в электрической части двигателя.
  5. Постепенное снижение вибрации при остановке механизма – признак наличия повреждений в механической системе.

Примеры временной реализации виброускорения подшипников электродвигателя приведены на .

(а)

(б)

А – размах колебаний около 14,0 м/с 2 , чётко выделяются колебания с периодом 20 мс – частотой вращения вала двигателя. б – размах колебаний около 30,0 м/с 2 , на длинной выборке регистрируются отдельные удары до 63,0 м/с 2 , пропускаемые спектральным анализом в результате усреднения. Анализ временной реализации позволяет обнаружить первые признаки отклонений на более ранних стадиях, чем спектральный анализ.

Что такое СКЗ (и с чем его едят) ?

Самый простой способ определить состояние агрегата - это измерить простейшим виброметром СКЗ вибрации и сравнить его с нормами. Нормы вибрации определены рядом стандартов, либо указываются в документации на агрегат и хорошо известны механикам.

А что же такое СКЗ? СКЗ - среднеквадратичное значение какого-либо параметра. Нормы обычно приводятся для виброскорости, и поэтому чаще всего звучит сочетание СКЗ виброскорости (иногда говорят просто СКЗ). В стандартах определен метод измерения СКЗ - в частотном диапазоне от 10 до 1000 Гц и ряд значений СКЗ виброскорости: ... 4.5, 7.1, 11.2, ... - они отличаются примерно в 1.6 раза. Для разных по типу и мощности агрегатов задаются значения норм из этого ряда.

Математика СКЗ

Мы имеем снятый временной сигнал виброскорости длиной 512 отсчетов (x0 ... x511). Тогда СКЗ вычисляется по формуле:

Еще проще вычисляется СКЗ по амплитуде спектра:

В формуле СКЗ по спектру индекс j перебирается не с 0, а с 2, так как СКЗ вычисляется в диапазоне от 10 Гц. При вычислении СКЗ по временному сигналу мы вынуждены применять какие-либо фильтры для выделения нужного частотного диапазона.

Рассмотрим пример. Сгенерируем сигнал из двух гармоник и шума.

Значение СКЗ по временному сигналу несколько больше, чем по спектру, так как в нем есть частоты менее 10 Гц, а в спектре мы их выбросили. Если в примере убрать последнее слагаемое rnd(4)-2, добавляющее шум, то значения точно совпадут. Если увеличить шум, например rnd(10)-5, то расхождение будет еще больше.


Другие интересные свойства: значение СКЗ не зависит от частоты гармоники, конечно, если она попадает в диапазон 10-1000 Гц (попробуйте поменять числа 10 и 17) и от фазы (поменяйте (i+7) на что-нибудь другое). Зависит только от амплитуды (числа 5 и 3 перед синусами).

Для сигнала из одной гармоники:

Вычислить СКЗ виброперемещения или виброускорения из СКЗ виброскорости можно только в простейших случаях. Например, когда мы имеем сигнал из одной оборотной гармоники (либо она намного больше остальных) и знаем ее частоту F. Тогда:

Например, для оборотной частоты 50 Гц:

СКЗуск=3.5 м/с2

СКЗскор=11.2 мм/с

Дополнения от Антона Азовцева [ВАСТ ]:

Под общим уровнем обычно понимается среднеквадратичное или максимальное значение вибрации в определенной полосе частот.

Наиболее типичным и распространенным является значение виброскорости в полосе 10-1000Гц. А вообще на эту тему есть множество ГОСТов:
ИСО10816-1-97 - Контроль состояния машин по результатам измерений вибрации на
невращающихся частях. Общие требования.
ИСО10816-3-98 - Контроль состояния машин по результатам измерений вибрации на
невращающихся частях. Промышленные машины номинальной мощностью свыше 15 кВт и
номинальной скоростью от 120 до 15000 об/мин.
ИСО10816-4-98 - Контроль состояния машин по результатам измерений вибрации на
невращающихся частях. Газотурбинные установки за исключением установок на основе
авиационных турбин.
ГОСТ 25364-97 - Агрегаты паротурбинные стационарные. Нормы вибрации опор
валопроводов и общие требования к проведению измерений.
ГОСТ 30576-98 - Насосы центробежные питательные тепловых электростанций. Нормы
вибрации и общие требования к проведению измерений.

По большинству ГОСТов требуется измерять среднеквадратичные значения виброскорости.

То есть надо взять датчик виброскорости, оцифровать сигнал на протяжении некоторого времени, отфильтровать сигнал с тем, чтобы удалить компоненты сигнала вне полосы, взять сумму квадратов всех значений, извлечь из нее квадратный корень, поделить на число сложенных значений и все - вот он общий уровень!

Если сделать тоже, но вместо среднеквадратичного взять просто максимум, то получится "Пиковое значение" А если взять разность между максимальным и минимальным, то получится так называемый "Двойной размах" или "пик-пик". Для колебаний простой формы среднеквадратичное значение в 1.41 раза меньше пикового и в 2.82 раза мешьже пик-пикового.

Это цифровой, есть и аналоговые детекторы, интеграторы, фильтры и т.п.

Если Вы пользуете датчик ускорения, то предварительно надо еще проинтегрировать сигнал.

Суть заключается в том, что надо просто сложить значения всех составляющих спектра в интересующей полосе частот (ну естественно не сами значения, а взять корень из суммы квадратов). Так работал наш (ВАСТовский) прибор СД-12 - он именно вычислял СКЗ общие уровни по спектрам, теперь же СД-12М вычисляет реальные значения общих уровней, применяя фильтрацию и т.п. числовую обработку в области временных сигналов, поэтому при измерении общего уровня он одновременно выччисляет СКЗ, пик, пик-пик и пик фактор, что позволяет проводить правильный мониторинг...

Есть еще пара замечаний - спектры, естественно, должны быть в линейных единицах и тех, в которых надо получить общий уровень (не логарифмический, то есть не в дБ, а в ммс). Если спектры в ускорении (G или мсс), то их надо проинтегрировать - поделить каждое значение на 2*пи*частоту, соответствующую этому значению. И еще есть некая сложность - спектры обычно вычисляются с применением некого весового окна, например Ханнинга, эти окна тоже вносят сои поправки, что существенно затрудняет дело - надо знать какое окно и его свойства - проще всего посмотреть в справочнике по цифровой обработке сигналов.

Для примера - если мы имеем спектр виброускорения, полученный с окном ханнинга, то чтобы получить СКЗ виброускорения, то надо все каналы спектра поделить на 2пи*частоту канала, потом посчитать сумму квадратов значений в правильной полосе частот, потом умножить на две трети (вклад окна ханнинга), потом извлечь корень из полученного.

А есть еще интерессные вещи

Есть всякие пик и крест факторы, которые получаются, если поделить максимальное на среднеквадратичное значение общих уровней вибрации. Если значение этих пик факторов большое, значит в механизме имеются сильные одиночные удары, то есть состояние оборудования плохое, на этом основаны, например приборы типа СПМ. Этот же принцип, но в статистической интерпретации пользует Диамех в виде Эксцесса - это горбы в дифференциальном распределении (во как хитро зовется!) значений временного сигнала по отношении с обычному "нормальному" распределению.

Но проблема с этими факторами заключается в том, что эти факторы сначала растут (с ухудшением состояния оборудование, появлением дефектов), а потом начинают падать, когда состояние еще больше ухудшается, вот тут и проблема - надо понять толи пикфактор с экцессом еще растет, толи уже падает...

В общем и целом надо следить за ними. Правило грубое, но более-менее разумное выглядит так - когда пикфактор начал падать, а общий уровень начал резко расти, то все плохо, надо чинить оборудование!

А есть еще много всего интересного!


Вибрация – движение точки (или тела) вокруг исходного положения, повторяющееся точно через определенные промежутки времени (периодически). Простейшую форму периодического колебания представляют собой гармонические колебания , график которого в зависимости от времени и представляет собой синусоиду (см.рис.1). Время между двумя последующими, в точности схожими положениями колеблющейся точки (или тела) называют периодом колебания (Т).

Частота колебания связана с периодом через соотношение:

Что же касается величины колебания, то она может быть описана, согласно ГОСТ 10816-1-99, тремя основными параметрами: вибросмещением ( s ) , виброскоростью ( v ) и виброускорением ( a ) . Эти параметры имеют определенные математические соотношения друг к другу при рассмотрении гармонических (простейших) колебаний. Если вибрация точки (или тела) имеет чисто продольную форму колебаний вдоль одной оси (х) , то мгновенное смещение (вибросмещение) от исходного положения может быть описано математическим уравнением:

где - угловая частота;

максимальное смещение точки (или тела) от исходного положения;

t – время.

Изменение смещения во времени является скоростью (виброскорость) движения точки (или тела). Поэтому колебания так же можно описать через скорость (v )

Таким образом, вибросмещение может быть преобразовано в скорость посредством дифференцирования.

Дифференцирование сопровождается умножением амплитуды на частоту, поэтому амплитуда виброскорости на определенной частоте пропорциональна смещению (s) умноженному на частоту (f) . При фиксированном смещении скорость с увеличением частоты возрастет в два раза, а если частоту увеличить в 10 раз, то скорость возрастет в 10 раз.

Изменение скорости движения точки (или тела) во времени является ускорением (виброускорение) движения:

То есть, чтобы получить из скорости ускорение, необходимо еще одно дифференцирование, а значит еще одно умножение на частоту. Поэтому ускорение при фиксированном смещении будет пропорционально квадрату частоты.

По второму закону Ньютона, сила равна массе, умноженной на ускорение. Поэтому при заданном смещении сила будет пропорциональна квадрату частоты. Именно поэтому на практике не сталкиваются с колебаниями, где большие ускорения сопровождаются большими смещениями , просто не существует таких очень больших сил, которые были бы крайне разрушительными.

Как видно из вышеприведенных уравнений, форма и период колебаний остается неизменным независимо от того рассматривается ли смещение, скорость или ускорение.

Следует отметить, что мгновенные значения s , v , a отличаются по фазе . Так скорость опережает смещение на фазовый угол 90 0 (в уравнении) и ускорение опережает скорость на фазовый угол 90 0 (в уравнении). В качестве характеризующей величины было применено пиковое значение амплитуды колебаний , то есть. Применение пикового значения амплитуды колебаний эффективны при рассмотрении гармонических (простейших) колебаний.

Величины вибросмещения, виброскорости и виброускорения в стандартных единицах измерения связаны следующими уравнениями:

При рассмотрении колебаний (рис.2) используют другие величины амплитуд.

Среднее арифметическое абсолютное значение амплитуды колебания характеризует общую интенсивность вибрации и определяется по формуле:

Среднее значение амплитуды колебаний используется при анализе колебаний за очень большой промежуток времени (сутки, несколько суток), в основном в стационарных системах мониторинга оборудования. Поэтому эта величина особого практического интереса не представляет.

Другой величиной амплитуды колебаний является среднее квадратическое значение (СКЗ). СКЗ является важной характеристикой амплитуды вибрации. Для ее расчета необходимо возвести в квадрат мгновенные значения амплитуды колебаний , и усреднить получившиеся величины по времени. Для получения правильного значения, интервал усреднения должен быть не меньше одного периода колебания. После этого извлекается квадратный корень и получается СКЗ.

Для чисто гармонических колебаний (вибрация содержит только одну частоту колебаний) соотношение между пиковым, средним и средним квадратическим значениями амплитуды определяются по следующим формулам:

В более общем виде эти соотношения можно описать так:

Коэффициенты F f и F c называются соответственно коэффициентом формы и коэффициентом амплитуды. Эти коэффициенты дают представление о форме волны изучаемой вибрации.

Для чисто гармонических колебаний эти коэффициенты равны:

Колебания, встречающиеся на практике, не являются чисто гармоническими колебаниями, хотя многие из них могут быть периодическими. На рис.3 дан пример типичного колебания встречающегося в практике.

Определив пиковое, среднее и среднее квадратическое значения этой вибрации, а так же ее коэффициенты формы и амплитуды можно получить много полезной информации и в результате сказать о негармоническом характере вибрации. Однако практически невозможно на основе этой информации предсказать о возможных дефектах вызываемых вибрацию в элементах конструкции машины или механизма. Поэтому нужно использовать другие

Параметры вибрации в различных единицах измерения можно пересчитать не только по выше приведенным формулам, но и с помощью калькуляторов пересчета вибрации, которые предлагают как зарубежные, так и отечественные фирмы. На рис.4 вы видите один из таких калькуляторов. Для знакомства с его работой Вы можете его скачать на свой диск и запустить его.

R.S. Если кто-то из вас дорогой читатель не совсем понял данную статью, так как не в ладах с математикой, то рекомендую для начала изучить данный вопрос с помощью книги: . В этой книге весь материал изложен обыкновенным языком, без единой формулы.

ГОСТ ИСО 10816-1-97

Группа Т34

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Вибрация

КОНТРОЛЬ СОСТОЯНИЯ МАШИН ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ
ВИБРАЦИИ НА НЕВРАЩАЮЩИХСЯ ЧАСТЯХ

Часть 1. Общие требования

Mechanical vibration. Evaluation of machine vibration by measurements
on non-rotating parts. Part 1. General guidelines


МКС 17.160
ОКП 42 7791

Дата введения 1999-07-01

Предисловие

1 РАЗРАБОТАН Российской Федерацией

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 11-97 от 25 апреля 1997 г.)

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Белоруссия

Госстандарт Белоруссии

Республика Казахстан

Госстандарт Республики Казахстан

Киргизская Республика

Киргизстандарт

Республика Молдова

Молдовастандарт

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикгосстандарт

Туркменистан

Главная государственная инспекция Туркменистана

Республика Узбекистан

Узгосстандарт

Украина

Госстандарт Украины

3 Настоящий стандарт содержит полный аутентичный текст международного стандарта ИСО 10816-1-95 "Вибрация. Контроль вибрационного состояния машин по измерениям вибрации на невращающихся частях. Часть 1: Общее руководство"

4 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 17 сентября 1998 г. N 353 межгосударственный стандарт ГОСТ ИСО 10816-1-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1999 г.

5 ВВЕДЕН ВПЕРВЫЕ

Введение

Введение


Настоящий стандарт является базовым нормативным документом, в котором изложены общие руководящие принципы измерения и оценки механической вибрации статорных элементов машин, например опор подшипников. Требования к вибрационным измерениям и критерии оценки состояния машин конкретных типов устанавливают в стандартах на эти машины, разрабатываемых на базе данного стандарта.

Для многих машин результаты измерений вибрации статорных элементов являются достаточными для адекватной оценки условий надежности их эксплуатации, а также влияния на работу соседних агрегатов. Однако для некоторых машин, например с гибкими роторами, измерения вибрации на неподвижных частях могут оказаться недостаточными. В этих случаях осуществляют также измерения вибрации вращающихся роторов, т. е. надежный контроль должен базироваться на результатах измерений вибрации как статорных, так и роторных элементов.

Результаты измерений вибрации могут быть использованы при эксплуатационном контроле, приемочных испытаниях, диагностических и аналитических исследованиях. Данный стандарт является руководством только по эксплуатационному контролю вибрации и измерениям вибрации при приемочных испытаниях оборудования.

В стандарте использованы три основных параметра вибрации: виброперемещение, виброскорость и виброускорение, - и дан порядок установления их предельных значений. Выполнение предлагаемых руководящих принципов в большинстве случаев должно гарантировать удовлетворительную работу оборудования.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ


Настоящий стандарт устанавливает общие условия и порядок определения и оценки вибрационного состояния на основе измерений, выполняемых на статорных элементах машин. Общие критерии оценки, основанные на измерении как собственно значений параметров вибрации, так и значений их изменений, относящиеся как к эксплуатационному контролю, так и к приемочным испытаниям, должны быть установлены с учетом необходимости обеспечить следующие факторы:

- безопасную продолжительную работу машины;

- отсутствие влияния вибрации машины на работу соседних машин и механизмов.

Настоящий стандарт распространяется на вибрацию, создаваемую самой машиной, и не распространяется на вибрацию, передаваемую извне.

Угловая вибрация в данном стандарте не рассматривается.

2 НОРМАТИВНЫЕ ССЫЛКИ


В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 24346-80 (СТ СЭВ 1926-79) Вибрация. Термины и определения

ГОСТ 25364-97 Агрегаты паротурбинные стационарные. Нормы вибрации опор валопроводов и общие требования к проведению измерений

ГОСТ ИСО 2954-97 Вибрация машин с возвратно-поступательным и вращательным движением. Требования к средствам измерений

3 ОПРЕДЕЛЕНИЯ


В стандарте использованы термины по ГОСТ 24346 .

4 ИЗМЕРЕНИЕ ВИБРАЦИИ

4.1 Измеряемые характеристики

4.1.1 Диапазон частот

Измерения вибрации следует проводить в диапазоне частот, охватывающем частотный спектр колебаний машины. Ширина диапазона частот зависит от типа машины (например, диапазон частот, необходимый для оценки целостности подшипников качения, должен включать в себя частоты более высокие, чем для машин с подшипниками скольжения). Рекомендации по выбору диапазона частот для машин конкретных типов должны быть приведены в соответствующих стандартах, например для паротурбинных стационарных агрегатов - в ГОСТ 25364.

Примечание - В прошлые годы контроль вибрационного состояния в основном связывали с измерением вибрации в фиксированном диапазоне частот 10...1000 Гц и оценкой среднего квадратического значения виброскорости в этом диапазоне; требования к соответствующим средствам измерений приведены в ГОСТ ИСО 2954. Однако для машин некоторых типов могут потребоваться измерения в другом диапазоне частот и иных параметров вибрации.

4.1.2 Измеряемая величина

Исходя из целей данного стандарта в качестве измеряемой величины может быть использована одна из следующих:

- виброперемещение, в микрометрах (мкм);

- виброскорость, в миллиметрах на секунду (мм/с);

- виброускорение, в метрах на секунду в квадрате (м/с).

Порядок использования, случаи применения и ограничения, налагаемые на эти величины, рассмотрены в разделе 6.

Как правило, для вибрации, измеряемой в широком диапазоне частот, не существует простых соотношений между виброускорением, виброскоростью и виброперемещением, а также между пиковыми и средними квадратическими значениями вибрационных величин. Краткий анализ причин этого дан в приложении А, в котором приведены также некоторые точные зависимости между указанными выше параметрами для случая, когда частотные составляющие вибрации известны.

Следует четко определять, по какому параметру вибрации оценивают вибрационное состояние: размаху виброперемещения, среднему квадратическому значению виброскорости и пр.

4.1.3 Значения параметров вибрации

Под значением параметра вибрации для определенного положения и направления измерений понимают результат измерений, выполненных с помощью оборудования, удовлетворяющего требованиям раздела 5.

Как правило, при контроле широкополосной вибрации машин роторного типа в качестве оцениваемого параметра используют среднее квадратическое значение виброскорости, поскольку оно связано с энергией колебаний. В ряде случаев, однако, предпочтительно использование других параметров: связанных с виброперемещением или виброускорением или пиковых значений вместо средних квадратических. В этих случаях должны быть использованы другие критерии, которые не всегда связаны простыми соотношениями с критериями для средних квадратических значений виброскорости.

4.1.4 Уровень вибрации

Обычно измерения проводят в различных точках в двух или трех взаимно перпендикулярных направлениях, что позволяет получить набор значений параметров вибрации. Под уровнем вибрации машины понимают максимальное значение вибрации, измеренной в одной определенной точке или группе точек в выбранных направлениях, при определенных условиях и установившемся режиме работы.

Вибрационное состояние машин многих типов может быть оценено по уровню вибрации для одной точки измерения. Однако для некоторых машин такой подход является неприемлемым, и уровни вибрации следует определять на основе независимых измерений в ряде точек.

4.2 Точки измерения

Измерения следует проводить на подшипниках, корпусах подшипников или других элементах конструкции, которые в максимальной степени реагируют на динамические силы и характеризуют общее вибрационное состояние машины. Типичные примеры расположения точек измерения приведены на рисунках 1а-1д.

Рисунок 1a - Точки измерения на опоре подшипника

Рисунок 1б - Точки измерения на корпусе подшипника

Рисунок 1в - Точки измерения на малых электрических машинах

Рисунок 1г - Точки измерения на двигателе

Рисунок 1д - Точки измерения на вертикально установленной машине

Полную оценку вибрационного состояния крупных агрегатов дают результаты измерений в контролируемых точках в трех взаимно перпендикулярных направлениях, как указано на рисунках 1а-1д. Как правило, подобная полнота измерений требуется только для приемочных испытаний. При эксплуатационном контроле обычно выполняют одно или два измерения в радиальном направлении [как правило, горизонтальном и(или) вертикальном]. Кроме того, дополнительно можно также проводить измерения осевой вибрации, обычно в месте расположения упорного подшипника.

Расположение точек измерения для машин конкретных типов должно быть приведено в соответствующих стандартах на машины этих типов.

4.3 Требования к состоянию машины при эксплуатационном контроле

Эксплуатационный контроль выполняют только при полностью собранной на штатных опорах машине на месте ее эксплуатации.

4.4 Требования к опорам машины при приемочных испытаниях

4.4.1 На месте эксплуатации

Если приемочные испытания проводят на месте эксплуатации, роторы должны быть установлены на штатные опоры. В этом случае важно, чтобы при проведении приемочных испытаний были смонтированы все основные элементы машины; для головных образцов машин это требование является обязательным, а для серийных машин, если это невозможно, оценочные критерии должны быть соответствующим образом корректированы. Результаты сравнения вибрационного состояния однотипных машин, установленных на различных фундаментах, сопоставимы лишь при условии сходства динамических характеристик фундаментов.

4.4.2 На испытательном стенде

Необходимо создать условия, при которых исключается совпадение частот собственных колебаний испытательной установки с частотой вращения машины или с какой-либо из ее мощных гармоник. Обычно полагают, что данное требование выполняется, если значение горизонтальной и вертикальной вибрации несущих элементов фундамента вблизи опор подшипников не превышает 50% значения вибрации соответствующего подшипника в том же направлении. Испытательная установка не должна вызывать также изменений значения какой-либо из основных собственных частот машины в эксплуатации. Если резонансы опоры устранить не удается, следует проводить приемочные испытания полностью собранной машины на месте эксплуатации.

Приемочные испытания машин некоторых классов, например небольших электрических машин, проводят на упругом основании. В этом случае низшие собственные частоты системы машина - испытательные опоры, рассматриваемой как жесткое тело, должны быть менее 1/2 минимальной частоты возбуждения. Соответствующие условия опирания могут быть достигнуты путем установки машины на упругоопирающийся фундамент (основание) или с помощью свободной подвески на мягких пружинах.

4.5 Условия эксплуатации машины

Оценка уровня вибрации должна быть проведена после достижения нормальных условий эксплуатации. Дополнительные измерения при других условиях не должны быть использованы для оценки вибрационного состояния в соответствии с разделом 6.

4.6 Оценка вибрации, наводимой внешними источниками

Оценку влияния виброактивности окружающих механизмов на вибрацию конкретной машины проводят на основании результатов измерений на остановленной машине. Если измеренное значение параметра вибрации превышает 1/3 рекомендуемого предельного значения, следует принять меры по уменьшению этого влияния.

5 КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНАЯ АППАРАТУРА


Конструкция контрольно-измерительной аппаратуры (далее - аппаратура) должна обеспечивать ее нормальное функционирование в условиях проводимых измерений (температура окружающей среды, влажность воздуха и т.д.). Следует особое внимание уделить креплению вибропреобразователя и убедиться в том, что это крепление не изменяет вибрационные характеристики машины. Требования к аппаратуре, предназначенной для измерения среднего квадратического значения вибрации в диапазоне 10...1000 Гц, - по ГОСТ ИСО 2954.

В настоящее время для контроля широкополосной вибрации наиболее часто используют приборы двух типов:

- приборы, содержащие детектор среднего квадратического значения и индикатор для считывания средних квадратических значений измеряемой величины;

- приборы, содержащие либо детектор среднего квадратического значения, либо усредняющий детектор, но калиброванные для считывания размаха или амплитуды колебаний; при этом калибровка основана на соотношении между средними квадратическими и пиковыми значениями для чисто синусоидального сигнала.

Если оценка вибрации базируется на результатах измерения более чем одной величины (перемещение, скорость, ускорение), применяемые приборы должны обеспечивать измерение всех этих величин.

Измерительная система должна предусматривать возможность калибровки всего измерительного тракта (желательно встроенное устройство калибровки) и иметь независимые выходы для подсоединения дополнительных анализаторов и т.д.

6 КРИТЕРИИ ОЦЕНКИ ВИБРАЦИОННОГО СОСТОЯНИЯ МАШИН

6.1 Виды критериев

Рассматриваются критерии двух видов, распространяющиеся на эксплуатационный контроль и приемочные испытания и предназначенные для оценки уровней вибрации машин различных типов. Критерий 1 связан со значениями измеряемых параметров вибрации, а критерий 2 - с изменениями этих значений (независимо от направления изменений).

6.2 Критерий 1

6.2.1 Зоны вибрационного состояния

Критерий 1 связан с определением границ для абсолютного значения параметра вибрации, соответствующих допустимым динамическим нагрузкам на подшипники и допустимой вибрации, передаваемой вовне через опоры и фундамент. Максимальное значение, полученное в результате измерения на каждом подшипнике или опоре (т.е. значение уровня вибрации - как определено в 4.1.4), сравнивают с границами четырех зон, установленных исходя из международного опыта проведения исследований и эксплуатации. Данные зоны предназначены для качественной оценки вибрационного состояния машин и принятия решения о необходимых мерах. Иное (сравнительно с приведенным ниже) число зон и их расположение может быть использовано для машин специальных типов, которые рассматриваются в соответствующих стандартах. Примерные значения границ зон приведены в приложении Б.

Зона А - В эту зону попадают, как правило, новые машины, только что введенные в эксплуатацию.

Зона В - Машины, попадающие в эту зону, обычно считают пригодными для дальнейшей эксплуатации без ограничения сроков.

Зона С - Машины, попадающие в эту зону, обычно рассматривают как непригодные для длительной непрерывной эксплуатации. Обычно данные машины могут функционировать ограниченный период времени, пока не появится подходящая возможность для проведения ремонтных работ.

Зона D - Уровни вибрации в данной зоне обычно рассматривают как достаточно серьезные, для того чтобы вызвать повреждение машины.

Числовые значения границ упомянутых зон не предназначены служить в качестве технических условий при приемочных испытаниях, это является предметом соглашения между производителем машины и потребителем. Однако данные границы могут служить в качестве руководства с тем, чтобы избежать чрезмерно завышенных и нереалистических требований. В определенных случаях для машин некоторых типов могут быть установлены особенности, которые потребуют изменения значений границ зон (в большую или меньшую сторону). Тогда производителю машин, как правило, следует объяснить причину данных изменений и, в частности, подтвердить, что машину не следует подвергать опасности, эксплуатируя при более высоких уровнях вибрации.

6.2.2 Границы зон состояний

Вибрация конкретной машины зависит от ее размеров, динамических характеристик вибрирующих деталей, способа монтажа и назначения. При выборе зон допустимой вибрации машины необходимо учитывать также условия, влияющие на ее вибрационное состояние. Независимо от типа подшипников среднее квадратическое значение виброскорости статорных элементов (например, опор подшипников) машин большинства типов, как правило, адекватно характеризует условия работы роторов, их воздействие на опорные элементы и соседние механизмы, а также состояние самих машин в широком диапазоне рабочих скоростей. Однако для некоторых машин, например с очень низкими рабочими скоростями, применение одного параметра - среднего квадратического значения виброскорости - без учета значения рабочей скорости может узаконить недопустимые высокие виброперемещения, в частности, когда доминируют колебания с оборотной частотой. С другой стороны, применяя принцип постоянства виброскорости к машинам с высокими рабочими скоростями или наличием высокочастотных спектральных составляющих вибрации, возбуждаемых некоторыми узлами машины, можно прийти к недопустимо высокому уровню виброускорений.

С учетом вышеизложенного критерии приемки, основанные на использовании среднего квадратического значения виброскорости, должны иметь общую форму, приведенную на рисунке 2 (см. также приложение В), на котором указаны границы частотного диапазона измерений и , и показано, что ниже частоты и выше частоты допустимое значение виброскорости является уже функцией частоты вибрации. Для зоны от до применим критерий постоянной виброскорости - именно для данного критерия приведены значения границ в приложении Б. Более точное определение критериев приемки и значений , , и должно быть дано в стандартах на машины конкретных типов.

Рисунок 2 - Общий вид кривых для критерия на основе среднего квадратического значения виброскорости


Вибрация многих машин содержит доминирующую частотную составляющую, нередко на частоте вращения вала. Для таких машин допустимые значения вибрации могут быть получены из рисунка 2 как значения для данной доминирующей частоты.

Если же для некоторой машины значительная часть вибрационной энергии сосредоточена за пределами диапазона частот …, возможны следующие решения:

а) Помимо измерений виброскорости проводят измерения в широкой полосе частот виброперемещения (если основная часть энергетического спектра лежит ниже ) или виброускорения (если основная часть энергетического спектра лежит выше ). Допустимые значения параметров виброперемещения или виброускорения получают из рисунка 2, переводя значения виброскорости на краях кривых (т.е. в диапазонах ..., ....) в постоянные значения виброскорости и виброускорения соответственно. Вибрацию можно считать допустимой, если она является таковой по всем критериям (перемещения, скорости и ускорения).

б) С помощью анализатора спектра в спектре вибрации выделяют все мощные частотные составляющие и определяют для них значения виброперемещения, виброскорости и виброускорения. После этого на основе уравнения (А.2) рассчитывают эквивалентное значение параметра виброскорости; для частотных составляющих, лежащих ниже и выше , весовые коэффициенты берут в соответствии с рисунком 2. Окончательную оценку делают на основе сравнения со значениями границ в диапазоне ….

Следует иметь в виду, что, кроме случая единственной доминирующей составляющей, непосредственное сравнение составляющих частотного спектра с границами, определяемыми кривыми на рисунке 2, приведет к ошибочным заключениям.

в) Используют измерительный прибор, форма частотной характеристики которого в области, где сосредоточена вибрационная энергия машины, совпадает с формой кривых на рисунке 2. Окончательную оценку также делают на основе сравнения со значениями границ в диапазоне ….

Дополнительное руководство по определению границ зон приведено в приложении В. Для машин некоторых типов, возможно, потребуется определение границ зон иных, чем те, что представлены на рисунке 2 (см., например,

6.3 Критерий 2

Данный критерий основан на оценке изменения значения параметра вибрации по сравнению с предварительно установленным эталонным значением в установившемся режиме работы машины. Значительные изменения (увеличение или уменьшение) значения параметра широкополосной вибрации могут потребовать принятия определенных мер даже в том случае, когда граница зоны С в соответствии с критерием 1 еще не достигнута. Такие изменения могут иметь внезапный характер или постепенно нарастать во времени и указывают на возможное возникновение повреждения машины в начальной стадии или другие неполадки.

При использовании критерия 2 важно, чтобы измерения значений параметров вибрации, подлежащие впоследствии сравнению, проводили при одних и тех же положении и ориентации преобразователя вибрации и приблизительно в одном и том же режиме работы машины. Необходимо определить очевидные изменения значения параметра вибрации независимо от его общего значения, чтобы предотвратить возникновение опасной ситуации. Насколько данное изменение является значительным, должно быть определено в соответствующих стандартах на машины конкретных типов.

Следует иметь в виду, что некоторые существенные изменения в состоянии машины могут быть обнаружены только при контроле отдельных спектральных составляющих (см. 6.5.1).

6.4 Предельные уровни вибрации

6.4.1 Общие положения

Как правило, для машин, предназначенных для длительной эксплуатации, устанавливают предельные уровни вибрации, превышение которых в установившемся режиме работы машины приводит к подаче сигналов ПРЕДУПРЕЖДЕНИЕ или ОСТАНОВ:

ПРЕДУПРЕЖДЕНИЕ - для привлечения внимания к тому, что вибрация или изменения вибрации достигли определенного уровня, когда может потребоваться проведение восстановительных мероприятий. Как правило, при появлении сигнала ПРЕДУПРЕЖДЕНИЕ машину можно эксплуатировать в течение некоторого периода времени, пока исследуют причины изменения вибрации и определяют комплекс необходимых мероприятий.

ОСТАНОВ - для индикации уровня вибрации, при превышении которого дальнейшая эксплуатация может привести к повреждениям. При достижении уровня ОСТАНОВ следует принять немедленные меры к снижению вибрации или же остановить машину.

Вследствие разницы в динамических нагрузках и жесткостях опор для различных положений и направлений измерения могут быть установлены разные предельные уровни вибрации. Определение таких уровней для машин конкретных типов должно быть приведено в соответствующих стандартах.

6.4.2 Установка уровня ПРЕДУПРЕЖДЕНИЕ

Уровень ПРЕДУПРЕЖДЕНИЕ может существенно изменяться в сторону возрастания или уменьшения от машины к машине. Обычно данное значение устанавливают относительно некоторого базового значения, полученного для каждого конкретного экземпляра машины при фиксированном положении и направлении измерения на основе накопленного опыта эксплуатации.

Рекомендуется устанавливать уровень ПРЕДУПРЕЖДЕНИЕ выше базового значения на некоторую долю, в процентах, значения верхней границы зоны В . Если базовое значение мало, уровень ПРЕДУПРЕЖДЕНИЕ может лежать ниже зоны С .

В том случае, если базовое значение не определено, например для новых машин, начальную установку положения ПРЕДУПРЕЖДЕНИЕ следует выполнить либо исходя из опыта эксплуатации аналогичных машин, либо на основе соглашения. Спустя некоторое время следует установить постоянное базовое значение и соответствующим образом скорректировать положение ПРЕДУПРЕЖДЕНИЕ.

Если произошло изменение постоянного базового значения (например, вследствие капитального ремонта машины), может потребоваться соответствующее изменение положения ПРЕДУПРЕЖДЕНИЕ. Вследствие разницы в динамических нагрузках и коэффициентах жесткости опор для различных опор машины могут быть установлены свои предельные уровни.

6.4.3 Установка уровня ОСТАНОВ

Уровень ОСТАНОВ, который обычно связывают с необходимостью сохранения механической целостности машины, может зависеть от различных конструктивных особенностей, применяемых для того, чтобы машина могла противостоять возникновению аномальных динамических сил. Таким образом, данное значение, как правило, будет одним и тем же для машин аналогичных конструкций и не будет связано с базовым значением, как это имело место для уровня ПРЕДУПРЕЖДЕНИЕ.

Вследствие многообразия машин различных конструкций не представляется возможным дать четкое руководство для точного установления уровня ОСТАНОВ. Обычно положение ОСТАНОВ устанавливают в пределах зон С или D .

6.5 Дополнительные характеристики

6.5.1 Частотные составляющие (векторные) вибрации

Метод контроля, рассматриваемый в данном базовом стандарте, ограничен оценкой вибрации в широком диапазоне частот без анализа частотных составляющих или учета фазы вибрации. В большинстве случаев для приемочных испытаний и эксплуатационного контроля этого достаточно. Однако при оценке вибрационного состояния машин определенных типов целесообразно использовать векторное представление вибрации.

Использование в качестве критерия изменения вектора вибрации особенно полезно при обнаружении и идентификации изменения в динамических характеристиках машины. Иногда такие изменения невозможно обнаружить в условиях контроля только лишь общего уровня широкополосной вибрации. Пример такой ситуации приведен в приложении Г. Однако установление критерия на основе изменения вектора вибрации выходит за рамки настоящего стандарта.

6.5.2 Вибрационная чувствительность

Вибрация, измеряемая на какой-либо конкретной машине, может зависеть от режима ее работы. В большинстве случаев подобное влияние условий работы незначительно, но иногда чувствительность к режиму может быть такова, что, в то время как вибрация некоторой определенной машины при некоторых условиях работы признается допустимой, она может перестать считаться таковой при изменении этих условий.

В тех случаях, когда некоторые аспекты вибрационной чувствительности вызывают сомнение, между потребителем и изготовителем машины должно быть достигнуто соглашение о необходимом объеме испытаний или о методах теоретической оценки.

6.5.3 Специальные методы контроля для подшипников качения

Особые методы используют для оценки состояния элементов роликовых подшипников. Данный вопрос рассмотрен в приложении Д. Определение оценочных критериев для этих методов выходит за рамки настоящего стандарта.

ПРИЛОЖЕНИЕ А (справочное). СООТНОШЕНИЯ МЕЖДУ РАЗЛИЧНЫМИ ПАРАМЕТРАМИ КОЛЕБАНИЙ

ПРИЛОЖЕНИЕ А
(справочное)


Уже в течение многих лет и по настоящее время вибрационное состояние машин широкого класса успешно оценивают путем измерения среднего квадратического значения виброскорости. Для вибрации, имеющей дискретный состав частотных составляющих известных амплитуды и фазы и малый пьедестал, определяемый случайными и ударными процессами, основные вибрационные параметры (например, перемещение, скорость, ускорение, пиковые и средние квадратические значения) связаны строго определенными математическими зависимостями. Вывод этих зависимостей известен, и в данном приложении не ставится задача повторно исследовать этот аспект проблемы. Однако ниже приведен ряд полезных соотношений.

Определив путем измерений зависимость виброскорости от времени, ее среднее квадратическое значение можно подсчитать следующим образом:

где - соответствующее среднее квадратическое значение;

- функция виброскорости от времени;

- период выборки, который должен быть много больше периода любого из основных частотных компонентов, содержащихся в .

Значения вибрационного ускорения, скорости или перемещения (соответственно ) определяют в результате анализа вибрационных спектров как функции угловой частоты (). Если известны средние квадратические значения амплитуд виброскорости или средние квадратические значения амплитуд ускорения , то связанное с ними и характеризующее колебательный процесс среднее квадратическое значение виброскорости определяется выражением

При наличии только двух значительных составляющих вибрации, определяющих биения среднего квадратического значения виброскорости между максимальным и минимальным значениями, среднее квадратическое значение вибрации приблизительно выражается в виде

Операцию пересчета виброскорости в виброперемещение можно осуществить только для синусоидальной вибрации. Если известна виброскорость синусоидальной составляющей, то размах (удвоенную амплитуду) виброперемещения определяют так:

где - размах виброперемещения, мкм;

- среднее квадратическое значение виброскорости на частоте , мм/с;

- угловая частота.

График для пересчета приведен на рисунке А.1.

Рисунок А.1 - График, указывающий соотношения между ускорением, скоростью и перемещением для гармонической вибрации

Рисунок А.1 - График, указывающий соотношения между ускорением,
скоростью и перемещением для гармонической вибрации

ПРИЛОЖЕНИЕ Б (справочное). ПРИМЕРНЫЕ КРИТЕРИИ ОЦЕНКИ ВИБРАЦИОННОГО СОСТОЯНИЯ МАШИН РАЗЛИЧНЫХ ТИПОВ

ПРИЛОЖЕНИЕ Б
(справочное)


Настоящий стандарт является базовым документом для разработки руководств по измерению и оценке вибрации машин. Критерии оценки для машин конкретных типов должны быть установлены в соответствующих отдельных стандартах. В таблице Б.1 приведены только временные, примерные критерии, которыми можно пользоваться при отсутствии подходящих нормативных документов. По ней можно определить верхние границы зон от А до С (см. 5.3.1), выраженные в средних квадратических значениях виброскорости , мм/с для машин различных классов:

Класс 1 - Отдельные части двигателей и машин, соединенные с агрегатом и работающие в обычном для них режиме (серийные электрические моторы мощностью до 15 кВт являются типичными машинами этой категории).

Класс 2 - Машины средней величины (типовые электромоторы мощностью от 15 до 875 кВт) без специальных фундаментов, жестко установленные двигатели или машины (до 300 кВт) на специальных фундаментах.

Класс 3 - Мощные первичные двигатели и другие мощные машины с вращающимися массами, установленные на массивных фундаментах, относительно жестких в направлении измерения вибрации.

Класс 4 - Мощные первичные двигатели и другие мощные машины с вращающимися массами, установленные на фундаменты, относительно податливые в направлении измерения вибрации (например, турбогенераторы и газовые турбины с выходной мощностью более 10 МВт).


Таблица Б.1- Примерные границы зон для машин различных классов

Класс 1

Класс 2

Класс 3

Класс 4

ПРИЛОЖЕНИЕ В (справочное). ОБЩЕЕ РУКОВОДСТВО ПО ОПРЕДЕЛЕНИЮ ГРАНИЦ ЗОН СОСТОЯНИЯ

ПРИЛОЖЕНИЕ В
(справочное)


Кривые, изображенные на рисунке 2 настоящего стандарта, могут быть представлены выражением:

где - допустимое среднее квадратическое значение виброскорости, мм/с;

- среднее квадратическое значение виброскорости, которое соответствует диапазону частот между и , мм/с;

Коэффициент, определяющий границы зон (например, предельное значение для зоны может быть получено подстановкой = 1,0; предел зоны : = 2,56; предел зоны : = 6,4). Данный коэффициент может зависеть от рабочих характеристик машины: скорости, нагрузки, давления и т.п.;

, - установленные границы диапазона частот, в пределах которого критерий определяется на основе одного значения параметра виброскорости (см. 6.2.2), Гц;

где - частота, для которой определяется среднее квадратическое значение, Гц;

- заданные константы для машин данного типа.

ПРИЛОЖЕНИЕ Г (справочное). ВЕКТОРНЫЙ АНАЛИЗ ИЗМЕНЕНИЙ ВИБРАЦИИ

ПРИЛОЖЕНИЕ Г
(справочное)


Критерии оценки вибрационного состояния машины основываются на измеренном уровне установившейся вибрации и любых изменениях этого уровня. Однако в некоторых случаях изменения вибрации могут быть зафиксированы только с помощью анализа отдельных частотных составляющих. Такая методика для составляющих с частотами, некратными оборотной, находится на начальной стадии развития, поэтому в данном стандарте не рассматривается.

Г.1 Общие положения

Полученный в результате измерений широкополосный установившийся вибрационный сигнал имеет сложный характер и состоит из ряда гармоник. Каждая из этих составляющих определяется ее частотой, амплитудой и фазой относительно некоторого известного начала отсчета. Стандартные приборы для вибрационного контроля измеряют интегральный уровень сигнала и не разделяют его на отдельные частотные составляющие. Однако современные диагностические устройства способны анализировать сложный сигнал путем определения амплитуды и фазы каждой составляющей, что позволяет определить вероятные причины аномального вибрационного состояния машины.

Изменения отдельных частотных составляющих, которые могут быть значительными, не всегда в той же степени отражаются на значении общей вибрации, и, следовательно, критерий, основанный на изменении общей вибрации, имеет ограниченное применение.

Г.2 Важность оценки изменения вектора

Рисунок Г.1, представляющий собой график в полярных координатах, используется для одновременного представления модуля и фазы одной из частотных составляющих сложного вибрационного сигнала в векторной форме. Вектор соответствует исходному установившемуся вибрационному состоянию машины, характеризуемому средним квадратическим значением виброскорости 3 мм/с и фазовым углом 40°. Вектор соответствует установившемуся вибрационному состоянию после некоторых изменений состояния машины и определяется средним квадратическим значением виброскорости 2,5 мм/с при фазовом угле 180°. Из рисунка Г.1 видно, что хотя среднее квадратическое значение виброскорости уменьшилось на 0,5 мм/с, истинное изменение вибрации характеризуется вектором , модуль которого равен 5,2 мм/с, что в 10 раз больше того значения, которое получается при сравнении абсолютных значений вибрации.

Рисунок Г.1 - Сравнение разности двух векторных гармоник вибрации с разностью их модулей

Г.3 Контроль за изменением вектора вибрации

Приведенный выше пример ясно показывает возможности наблюдения за изменением вектора вибрации. Однако нельзя забывать, что общий вибрационный сигнал состоит из ряда частотных составляющих, для каждой из которых можно регистрировать изменение вектора. Кроме того, недопустимое изменение вектора для одной из составляющих может быть вполне приемлемо для другой. В связи с этим применительно к настоящему стандарту, посвященному, в основном, эксплуатационному контролю вибрации, установить критерий изменения вектора отдельных частотных составляющих не представляется возможным.

ПРИЛОЖЕНИЕ Д (справочное). СПЕЦИАЛЬНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ И АНАЛИЗА ВИБРАЦИИ ПОДШИПНИКОВ КАЧЕНИЯ

ПРИЛОЖЕНИЕ Д
(справочное)


Простой метод определения вибрации в широкой полосе частот путем контроля виброускорения корпусов подшипников качения, как описано в основной части настоящего стандарта, нередко дает достаточную информацию о состоянии этих подшипников. Однако этот простой метод не во всех случаях может дать хорошие результаты. В частности, возможно появление ошибок в случае, когда в пределы частотного диапазона измерений попадают резонансные частоты подшипника, или в случае вибрационного влияния других источников, например зубчатых зацеплений.

Вследствие указанных обстоятельств возникает необходимость использования других средств измерений и методов анализа, которые разрабатывают специально для подшипников качения. Но ни один из приборов и методов не является универсальным для всех случаев. Так, невозможно с помощью какого-либо метода диагностировать все виды дефектов подшипников, и если какой-либо метод может с успехом обеспечить диагностирование основных дефектов машины определенного типа, он может оказаться совершенно непригодным для машины другого типа. Получаемые вибрационные характеристики зависят от типа подшипника, конструкции его опорных элементов, измерительной аппаратуры и методов обработки результатов. Все эти факторы должны быть хорошо изучены, и только в этом случае может быть разработан объективный метод оценки состояния подшипников. Выбор подходящего метода требует специальных знаний в части методов исследования, а также механизмов, к которым их применяют.

Ниже дано краткое описание некоторых измерительных приборов и методов анализа, которые получили распространение. Однако достаточной информации о соответствующих критериях оценки, пригодных для использования в стандартах, не имеется.

Д.1 Анализ исходных данных (измерение общей вибрации)

Имеется ряд предложений о применении простых измерений как альтернативы контролю среднего квадратического значения вибрационного ускорения с целью диагностировать состояние подшипников качения, а именно:

- измерение пикового ускорения;

- измерение отношения пикового значения ускорения к его среднему квадратическому значению (пик-фактор);

Определение произведения измеренных среднего квадратического и пикового значений ускорения.

Д.2 Частотный анализ

Отдельные частотные составляющие вибрационного спектра могут быть определены путем применения различных фильтров или спектрального анализа. При наличии достаточных данных о каком-либо конкретном типе подшипника могут быть определены путем расчета частотные составляющие, характеризующие определенные дефекты подшипника, а затем сопоставлены с соответствующими компонентами полученного спектра вибрации. Таким образом, можно не только получить информацию о наличии дефектов, но и диагностировать их.

Для более точного получения компонентов спектра, связанных с подшипниками, при наличии посторонних вибрационных воздействий (фона) достаточно эффективными являются методы когерентного усреднения, адаптивного подавления шума и выделения полезного спектра сигналов. Сравнительно новым является метод спектрального анализа огибающей вибрационного сигнала, прошедшего через полосовой высокочастотный фильтр.

Удобным вариантом метода спектрального анализа является анализ боковых полос основных характеристических частот подшипников (суммарных и разностных частот), а не самих составляющих на этих частотах. Для исследования боковых полос может быть использован анализ кепстра (определяемого как спектр мощности от логарифма спектра мощности), применяемый обычно для обнаружения дефектов в зубчатых зацеплениях.

Д.3 Метод анализа ударных импульсов

Существует ряд промышленных измерительных приборов, действие которых основано на том, что дефекты подшипников качения вызывают появление коротких импульсов очень высокой частоты, обычно называемых ударными импульсами.

Вследствие высокой крутизны ударных импульсов в их спектре присутствуют составляющие на очень высоких частотах. Указанные приборы обнаруживают эти высокочастотные составляющие и преобразуют их в величину, значение которой связано с состоянием подшипников.

Другим способом является спектральный анализ огибающей ударных импульсов.

Д.4 Другие методы

Существует несколько методов контроля, позволяющих обнаруживать дефекты в подшипниках без измерения вибрации. Такими методами являются, в частности: анализ акустического шума, анализ продуктов износа (феррография) и термография. Однако ни один из подобных методов не может претендовать на универсальное успешное применение, в некоторых же случаях они неприемлемы.



Текст документа сверен по:
официальное издание
М.: Издательство стандартов, 1998



Copyright © 2024 Образовательный портал.