Многогранники. Тела вращения. Геометрические тела. классификация геометрические тела многогранники тела вращения призма пирамида правильные многогранники цилиндр конус шар. Многогранники и тела вращения в жизни человека

Любое геометрическое тело состоит из оболочки, т. е. внешней поверхности, и какого-либо материала, его наполняющего (рис. 42). Каждое геометрическое тело имеет свою форму, кото­рая различается по составу, структуре и размерам.

Состав формы геометрического тела - перечень отсеков по­верхностей, составляющих его (табл. 4). Так, форма прямоуголь­ного параллелепипеда состоит из шести отсеков, поверхностей (граней): две из них являются основаниями параллелепипеда, а остальные четыре отсека образуют замкнутую выпуклую лома­ную поверхность, называемую боковой поверхностью.

Рис 42. Геометрическое тело: 1 - оболочка; 2 - отсеки поверхностей, образующих оболочку тела

Структура формы геометрического тела - характеристика формы, которая показывает взаимосвязь и расположение отсеков поверхностей относительно друг друга (см. рис. 44).

Эти характеристики взаимосвязаны и в наибольшей степени определяют форму геометрического тела и любого другого объ­екта.

По форме простые геометрические тела делятся на много­гранники и тела вращения.

Плоскость является частным случаем поверхности.

Многогранники - геометрические тела, оболочка которых об­разована отсеками плоскостей (рис. 43, а).

Грани - отсеки плоскостей, которые составляют поверхность (оболочку) многогранника; ребра - отрезки прямых, по которым пересекаются грани; вершины - концы ребер.

Тела вращения - геометрические тела (рис. 43, б), оболочка которых представляет собой поверхность вращения (например, шар) либо состоит из отсека поверхности вращения и одного (двух) отсека плоскостей (например, конус, цилиндр и т. п.).

Рис. 43. Многогранники (а) и тела вращения (б): 1 - оболочка геометрического тела;
2 - отсеки плоскостей; 3 - отсеки поверхностей вращения

4. Состав простых геометрических тел




Структура формы влияет на внешний облик геометрического тела. Рассмотрим это на примере прямого и наклонного цилинд­ров (рис. 44), отсеки оснований которых по-разному расположены относительно друг друга.

Рис. 44. Структурные различия в форме цилиндров

Рис. 45. Изменения формы цилиндров



Рис. 46. Четырехугольные пирамиды различной формы

Сравнивая изображения цилиндров на рисунке 45, можно сделать вывод, что изменение положения одного из оснований приводит к изменению формы геометрического тела.

Изменение высоты, ширины, длины, диаметра основания, угла наклона осевой, положение оснований относительно друг друга су­щественно влияет на форму геометрических тел. Например, рас­смотрите четырехугольные пирамиды различной формы (рис. 46).

Рис. 47. Геометрические тела

Разделы: Технология

Цели урока:

  • закрепить знания о геометрических телах, умения и навыки по построению чертежей многогранников;
  • развивать пространственные представления и пространственное мышление;
  • формировать графическую культуру.

Тип урока: комбинированный.

Оснащение урока: интерактивная доска MIMIO, мультимедийный проектор, компьютеры, проект mimo для интерактивной доски, мультимедийная презентация, программа «Компас-3D LT».

ХОД УРОКА

I. Организационный момент

1. Приветствие;

2. Проверка явки учащихся;

3. Проверка готовности к уроку;

4. Заполнение классного журнала (и электронного)

II. Повторение раннее изученного материала

На интерактивной доске открыт проект mimo

Лист 1. На уроках математики вы изучали геометрические тела. Несколько тел вы видите на экране. Давайте вспомним их названия. Учащиеся дают названия геометрическим телам, если есть затруднения – помогаю. (Рис. 1).

1 – четырехугольная призма
2 – усеченный конус
3 – треугольная призма
4 – цилиндр
5 – шестиугольная призма
6 – конус
7 – куб
8 – усеченная шестиугольная пирамида

Лист 4 . Задание 2. Даны геометрические тела и названия геометрических тел. Вызываем ученика к доске и вместе с ним перетаскиваем многогранники и тела вращения под названия, а затем перетаскиваем названия геометрических тел (рис. 2).

Делаем вывод, что все тела делятся на многогранники и тела вращения.

Включаем презентацию «Геометрические тела» (Приложение ). Презентация содержит 17 слайдов. Можно использовать презентацию на нескольких уроках, она содержит дополнительный материал (слайды 14-17). Со слайда 8 есть гиперссылка на Презентацию 2 (развертки куба). Презентация 2 содержит 1 слайд, на котором изображены 11 разверток куба (они являются ссылками на видеоролики). На уроке использована интерактивная доска MIMIO, а также учащиеся работают на компьютерах (выполнение практической работы).

Слайд 2. Все геометрические тела делятся на многогранники и тела вращения. Многогранники: призма и пирамида. Тела вращения: цилиндр, конус, шар, тор. Схему учащиеся перечерчивают в рабочую тетрадь.

III. Объяснение нового материала

Слайд 3. Рассмотрим пирамиду. Записываем определение пирамиды. Вершина пирамиды – общая вершина всех граней, обозначается буквой S. Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды (Рис. 3).

Слайд 4. Правильная пирамида. Если основание пирамиды - правильный многоугольник, а высота опускается в центр основания, то - пирамида правильная.
В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники.
Высота треугольника боковой грани правильной пирамиды называется - апофема правильной пирамиды .

Слайд 5. Анимация построения правильной шестиугольной пирамиды с обозначением ее основных элементов (Рис. 4).

Слайд 6 . Записываем в тетрадь определение призмы. Призма – многогранник, у которого два основания (равные, параллельно расположенные многоугольники), а боковые грани параллелограммы. Призма может быть четырехугольной, пятиугольной, шестиугольной и т.д. Призма называется по фигуре, лежащей в основании. Анимация построения правильной шестиугольной призмы с обозначением ее основных элементов (Рис. 5).

Слайд 7. Правильная призма – это прямая призма, в основании которой лежит правильный многоугольник. Параллелепипед – правильная четырехугольная призма (Рис. 6).

Слайд 8. Куб – параллелепипед, все грани которого квадраты (Рис. 7).

(Дополнительный материал: на слайде есть гиперссылка на презентацию с развертками куба, всего 11 разных разверток).
Слайд 9. Записываем определение цилиндра.Тело вращения – цилиндр, образованное вращением прямоугольника вокруг оси, проходящей через одну из его сторон. Анимация получения цилиндра (Рис. 8).

Слайд 10. Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (Рис.9).

Слайд 11. Усеченный конус – тело вращения, образованное вращением прямоугольной трапеции вокруг оси, проходящей через ее высоту (Рис. 10).

Слайд 12. Шар – тело вращения, образованное вращением круга вокруг оси, проходящей через его диаметр (Рис. 11).

Слайд 13. Тор – тело вращения, образованное вращением круга вокруг оси, параллельной диаметру круга (Рис. 12).

Учащиеся записывают определения геометрических тел в тетрадь.

IV. Практическая работа«Построение чертежа правильной призмы»

Переключаемся на проект mimio

Лист 7 . Дана треугольная правильная призма. В основании лежит правильный треугольник. Высота призмы = 70 мм, а сторона основания = 40 мм. Рассматриваем призму (направление главного вида показано стрелкой), определяем плоские фигуры, который мы увидим на виде спереди, сверху и слева. Вытаскиваем изображения видов и расставляем на поле чертежа (Рис. 13).

Учащиеся самостоятельно выполняют чертеж правильной шестиугольной призмы в программе «Компас – 3D». Размеры призмы: высота – 60 мм, диаметр описанной окружности вокруг основания – 50 мм.
Построение чертежа с вида сверху (Рис. 14).

Затем строится вид спереди (Рис. 15).

Затем строится вид слева и наносятся размеры (Рис. 16).

Работы проверяются и сохраняются на компьютерах учащимися.

V. Дополнительный материал по теме

Слайд 14 . Правильная усеченная пирамида (Рис. 17).

Слайд 15. Пирамида, усеченная наклонной плоскостью (Рис. 18).

Слайд 16. Развертка правильной треугольной пирамиды (Рис. 19).

Слайд 17. Развертка параллелепипеда (Рис. 20).

1 вариант

1. Тело, поверхность которого состоит из конечного числа плоских многоугольников, называется:

1. Четырехугольник 2. Многоугольник 3. Многогранник 4. Шестиугольник

2. К многогранникам относятся:

1. Параллелепипед 2. Призма 3. Пирамида 4. Все ответы верны

3. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани называется:

1. Диагональю 2. Ребром 3. Гранью 4. Осью

4. У призмы боковые ребра:

1. Равны 2. Симметричны 3. Параллельны и равны 4. Параллельны

5. Грани параллелепипеда не имеющие общих вершин, называются:

1. Противолежащими 2. Противоположными 3. Симметричными 4. Равными

6. Перпендикуляр, опущенный из вершины пирамиды на плоскость основания, называется:

1. Медианой 2. Осью 3. Диагональю 4. Высотой

7. Точки, не лежащие в плоскости основания пирамиды, называются:

1. Вершинами пирамиды 2. Боковыми ребрами 3. Линейным размером

4. Вершинами грани

8. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется:

1. Медианой 2. Апофемой 3. Перпендикуляром 4. Биссектрисой

9. У куба все грани:

1. Прямоугольники 2. Квадраты 3. Трапеции 4. Ромбы

10. Тело, состоящее из двух кругов и всех отрезков, соединяющих точки кругов называется:

1. Конусом 2. Шаром 3. Цилиндром 4. Сферой

11. У цилиндра образующие:

1. Равны 2. Параллельны 3. Симметричны 4. Параллельны и равны

12. Основания цилиндра лежат в:

1. Одной плоскости 2. Равных плоскостях 3. Параллельных плоскостях 4. Разных плоскостях

13. Поверхность конуса состоит из:

1. Образующих 2. Граней и ребер 3. Основания и ребра 4. Основания и боковой поверхности

14. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется:

1. Радиусом 2. Центром 3. Осью 4. Диаметром

15. Всякое сечение шара плоскостью есть:

1. Окружность 2. Круг 3. Сфера 4. Полукруг

16. Сечение шара диаметральной плоскостью называется:

1. Большим кругом 2. Большой окружностью 3. Малым кругом 4. Окружностью

17. Круг конуса называется:

1. Вершиной 2. Плоскостью 3. Гранью 4. Основанием

18. Основания призмы:

1. Параллельны 2. Равны 3. Перпендикулярны 4. Не равны

19. Площадью боковой поверхности призмы называется:

1. Сумма площадей боковых многоугольников

2. Сумма площадей боковых ребер

3. Сумма площадей боковых граней

4. Сумма площадей оснований

20. Пересечения диагоналей параллелепипеда является его:

1. Центром 2. Центром симметрии 3. Линейным размером 4. Точкой сечения

21. Радиус основания цилиндра 1,5 см, высота 4см. Найти диагональ осевого сечения.

1. 4,2 см. 2. 10 см. 3. 5 см.

0 . Чему равен диаметр основания, если образующая равна 7 см?

1. 7 см. 2. 14 см. 3. 3,5 см.

23. Высота цилиндра равна 8 см, радиус 1 см. Найти площадь осевого сечения.

1. 9 см 2 . 2. 8 см 2 3. 16 см 2 .

24. Радиусы оснований усеченного конуса равны 15 см и 12 см, высота 4 см. Чему равна образующая конуса?

1. 5 см 2. 4 см 3. 10 см

МНОГОГРАННИКИ И ТЕЛА ВРАЩЕНИЯ

2 вариант

1. Вершины многогранника обозначаются:

1. а, в, с, d ... 2. А, В, С, D ... 3. ab , cd , ac , ad ... 4. АВ, СВ, А D , СD ...

2. Многогранник, который состоит из двух плоских многоугольников, совмещенных параллельным переносом, называется:

1. Пирамидой 2. Призмой 3. Цилиндром 4. Параллелепипедом

3. Если боковые ребра призмы перпендикулярны основанию, то призма является:

1. Наклонной 2. Правильной 3. Прямой 4. Выпуклой

4. Если в основании призмы лежит параллелограмм, то она является:

1. Правильной призмой 2. Параллелепипедом 3. Правильным многоугольником

4. Пирамидой

5. Многогранник, который состоит из плоского многоугольника, точки и отрезков соединяющих их, называется:

1. Конусом 2. Пирамидой 3. Призмой 4. Шаром

6. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются:

1. Гранями 2. Сторонами 3. Боковыми ребрами 4. Диагоналями

7. Треугольная пирамида называется:

1. Правильной пирамидой 2. Тетраэдром 3. Треугольной пирамидой 4. Наклонной пирамидой

8. К правильным многогранникам не относится:

1. Куб 2. Тетраэдр 3. Икосаэдр 4. Пирамида

9. Высота пирамиды является:

1. Осью 2. Медианой 3. Перпендикуляром 4. Апофемой

10. Отрезки, соединяющие точки окружностей кругов, называются:

1. Гранями цилиндра 2. Образующими цилиндра 3. Высотами цилиндра

4. Перпендикулярами цилиндра

1. Осью цилиндра 2. Высотой цилиндра 3. Радиусом цилиндра

4. Ребром цилиндра

12. Тело, которое состоит из точки, круга и отрезков соединяющих их, называется:

1. Пирамидой 2. Конусом 3. Шаром 4. Цилиндром

13. Тело, которое состоит из всех точек пространства, называется:

1. Сферой 2. Шаром 3. Цилиндром 4. Полусферой

14. Граница шара называется:

1. Сферой 2. Шаром 3. Сечением 4. Окружностью

15. Линия пересечения двух сфер есть:

1. Круг 2. Полукруг 3. Окружность 4. Сечение

16. Сечение сферы называется:

1. Кругом 2. Большой окружностью 3. Малым кругом 4. Малой окружностью

17. Грани выпуклого многогранника являются выпуклыми:

1. Треугольниками 2. Углами 3. Многоугольниками 4. Шестиугольниками

18. Боковая поверхность призмы состоит из…

1. Параллелограммов 2. Квадратов 3. Ромбов 4. Треугольников

19. Боковая поверхность прямой призмы равна:

1. Произведению периметра на длину грани призмы

2. Произведению длины грани призмы на основание

3. Произведению длины грани призмы на высоту

4. Произведению периметра основания на высоту призмы

20. К правильным многогранникам относятся:

21. Радиус основания цилиндра 2,5 см, высота 12см. Найти диагональ осевого сечения.

1. 15 см; 2. 14 см; 3. 13 см.

22. Наибольший угол между образующими конуса 60 0 . Чему равен диаметр основания, если образующая равна 5 см?

1. 5 см; 2. 10 см; 3. 2,5 см.

23. Высота цилиндра равна 4 см, радиус 1 см. Найти площадь осевого сечения.

1. 9 см 2 . 2. 8 см 2 3. 16 см 2 .

24. Радиусы оснований усеченного конуса равны 6 см и 12 см, высота 8 см. Чему равна образующая конуса?

1. 10 см; 2. 4 см; 3. 6 см.

Многогранники и тела вращения

В рамках УСП «Первые шаги в пространство»

Команда «Морские котики», г.Новокузнецк


"Морские котики"?

Морские котики не только милые, но ещё и очень умные. Они легко обучаемы. У котиков великолепная встроенная навигационная система. Несмотря на то, что это стайные животные, морские котики уходят на охоту в одиночку и вообще проявляют индивидуализм. Мы назвали себя этими животными, потому что мы хотим во многом быть похожими на них, быть смелыми и умными, ведь часто этих животных недооценивают.


Девиз команды:

Мы-морские котики, Активны и умны, Наш девиз всего три слова, Улыбаться это клево!


Стихи о геометрических фигурах

Есть на свете пирамида –

Удивительный объект,

Ее строили в Египте,

А вот как для всех секрет.

Вот хожу я по квартире и смотрю вокруг себя, И по всюду окружают тела вращения меня. На окне стоит игрушка в виде конуса она. А вот банка из-под чая форму цилиндра приняла.


Стоит на кухне холодильник По форме он параллелепипед. Как у квадрата у него Шесть граней на лицо, Однако есть отличия

У куба грани равные,

А у него противоположные.

Признаюсь вам призма, Ну очень капризна. Скажу без обмана Но так многогранна (автор Наталья У.)

А лучшая фигура-куб!

Поставлю я на кон свой зуб

И грани все и ребра в нем,

Прямо под прямым углом


Многогранники и тела вращения в объектах окружающего мира

Гипотеза: Во многих предметах окружающего мира, можно увидеть многогранники и тела вращения


Многогранник -

Геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников.


Призма -

Многогранник, две грани которого n-угольники, а остальные грани - параллелограммы.


Параллелепипед -

Призма основаниями которой служат параллелограммы.


Куб -

Прямоугольный параллелепипед с равными измерениями. Все грани куба – равные квадраты.


Пирамида -

Многогранник, основание которого многоугольник, а остальные грани – треугольники, имеющие общую вершину.


Усеченная пирамида -

Многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.


Тела вращения -

Объемные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.


Цилиндр -

Фигура, полученная при вращении прямоугольника вокруг оси, содержащей его сторону.


Конус -

Фигура, полученная при вращении прямоугольного треугольника вокруг оси.






Вывод

В ходе исследования мы подтвердили свою гипотезу и убедились, что многие объекты окружающего нас мира имеют форму тел вращения и многогранников.



Гипотеза:

НЕ СУЩЕСТВУЕТ ГРАНИ МЕЖДУ МИРОМ ИСКУССТВА

И МИРОМ ГЕОМЕТРИИ.


Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия»

на переднем плане

изобразил каменный многогранник .


Голландский художник Мориц Корнилис Эшер (1898-1972) создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.


"Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.


Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором.

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.

Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры.


На картине «Гравитация» изображён додекаэдр , образованный двенадцатью плоскими пятиконечными звёздами. На каждой из площадок живёт длинношеее четырёхногое бесхвостое фантастическое животное; его туловище находится в пирамиде, в отверстия которой оно высовывает конечности, верхушка пирамиды является одной из стен жилища соседнего чудовища .


На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра.

Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ, т.е. они считали, что мы живём внутри свода, имеющего форму поверхности правильного додекаэдра.



Вывод:

ГИПОТЕЗА ДОКАЗАНА, ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ, МНОГОГРАННИКИ ЯВЛЯЮТСЯ НЕОТЪЕМЛЕМОЙ ЧАСТЬЮ ГЕОМЕТРИИ. НА ПРИМЕРЕ РАБОТ ВЕЛИКИХ ХУДОЖНИКОВ МЫ ДОКАЗАЛИ, ЧТО НЕ СУЩЕСТВУЕТ ГРАНИ МЕЖДУ ИСКУССТВОМ И ГЕОМЕТРИЕЙ.


Какой вклад вносит геометрия в развитие культуры человека?

Искусство - это особый способ познания и отражения действительности. Искусство развивает духовную культуру человека. Проанализировав работы великих художников мы без сомнений можем сказать, что не существует границы между миром искусства и миром геометрии. А значит геометрия так же развивает интеллектуальные, творческие способности человека, образное и пространственное мышление, поэтому данная наука является неотъемлемой частью культуры человека.


Ментальная карта «Многогранники и тела вращения в продукции предприятий моего города»


Где живет геометрия в Вашем городе?

Геометрия в Нашем городе живет по всюду!!! На какое архитектурное сооружение не посмотри, в нем обязательно присутствуют многогранники и тела вращения. Собранные вместе в одном сооружении они создают уникальные, неповторимые, гениальные здания!!!



Используемая литература:

  • http://www.uzluga.ru/potrb/Многогранник+–+это+такое+тело,поверхность+которого+состоит+из+конечного+числа+плоских+многоугольниковb/part-5.html
  • http://kamensky.perm.ru/proj/mng/01.htm
  • http://www.liveinternet.ru/tags/%FD%F8%E5%F0/page3.html
  • http://www.distedu.ru/mirror/_math/www.tmn.fio.ru/works/26x/304/d9_3.htm
  • https://ru.wikipedia.org/wiki/Эшер,_Мауриц_Корнелис
  • http://www.propro.ru/graphbook/graphbook/book/001/027.htm
  • http://math4school.ru/mnogogranniki.html









Выпуклый многогранник Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. Все грани выпуклого многогранника являются выпуклыми многоугольниками. В выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360 градусов.












Элементы призмы – Основание призмы 2 – Высота 3 – Боковая грань






Элементы пирамиды высота пирамиды 2-боковая грань пирамиды 3-основание пирамиды
















Додекаэдр Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.









ЦИЛИНДР Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра (3), а отрезки – его образующими (4). Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. Радиусом цилиндра называется радиус его основания(1). Высотой цилиндра называется расстояние между плоскостями оснований (2). Осью цилиндра называется прямая, проходящая через центры оснований. 4 5


КОНУС Конусом называется тело, которое состоит из круга – основания конуса(5), точки, не лежащей в плоскости этого круга – вершины конуса(2), и всех отрезков, соединяющих вершину конуса с точками основания – образующих конуса. Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания(1). Осью конуса называется прямая, содержащая его высоту. Полная поверхность конуса состоит из его основания(5) и боковой поверхности (3). Радиусом конуса – радиус его основания. СФЕРА И ШАР Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки (3). Данная точка называется центром сферы, а данное расстояние- радиусом сферы (1). Тело, ограниченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Плоскость, проходящая через центр шара, называется диаметральной плоскостью (2). Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы – большой окружностью. 3





Copyright © 2024 Образовательный портал.